#ifndef __FPROTO_GTWT02_H__ #define __FPROTO_GTWT02_H__ #include "weatherbase.hpp" #define AURIOL_AHFL_CONST_DATA 0b0100 typedef enum { GT_WT02DecoderStepReset = 0, GT_WT02DecoderStepSaveDuration, GT_WT02DecoderStepCheckDuration, } GT_WT02DecoderStep; class FProtoWeatherGTWT02 : public FProtoWeatherBase { public: FProtoWeatherGTWT02() { sensorType = FPW_GTWT02; } void feed(bool level, uint32_t duration) { switch (parser_step) { case GT_WT02DecoderStepReset: if ((!level) && (DURATION_DIFF(duration, te_short * 18) < te_delta * 8)) { // Found syncPrefix parser_step = GT_WT02DecoderStepSaveDuration; decode_data = 0; decode_count_bit = 0; } break; case GT_WT02DecoderStepSaveDuration: if (level) { te_last = duration; parser_step = GT_WT02DecoderStepCheckDuration; } else { parser_step = GT_WT02DecoderStepReset; } break; case GT_WT02DecoderStepCheckDuration: if (!level) { if (DURATION_DIFF(te_last, te_short) < te_delta) { if (DURATION_DIFF(duration, te_short * 18) < te_delta * 8) { // Found syncPostfix parser_step = GT_WT02DecoderStepReset; if ((decode_count_bit == min_count_bit_for_found) && ws_protocol_gt_wt_02_check()) { data = decode_data; data_count_bit = decode_count_bit; ws_protocol_gt_wt_02_remote_controller(); if (callback) callback(this); } else if (decode_count_bit == 1) { parser_step = GT_WT02DecoderStepSaveDuration; } decode_data = 0; decode_count_bit = 0; } else if ( DURATION_DIFF(duration, te_long) < te_delta * 2) { subghz_protocol_blocks_add_bit(0); parser_step = GT_WT02DecoderStepSaveDuration; } else if ( DURATION_DIFF(duration, te_long * 2) < te_delta * 4) { subghz_protocol_blocks_add_bit(1); parser_step = GT_WT02DecoderStepSaveDuration; } else { parser_step = GT_WT02DecoderStepReset; } } else { parser_step = GT_WT02DecoderStepReset; } } else { parser_step = GT_WT02DecoderStepReset; } break; } } protected: uint32_t te_short = 500; uint32_t te_long = 2000; uint32_t te_delta = 150; uint32_t min_count_bit_for_found = 37; void ws_protocol_gt_wt_02_remote_controller() { id = (data >> 29) & 0xFF; battery_low = (data >> 28) & 1; // btn = (data >> 27) & 1; channel = ((data >> 25) & 0x3) + 1; if (!((data >> 24) & 1)) { temp = (float)((data >> 13) & 0x07FF) / 10.0f; } else { temp = (float)((~(data >> 13) & 0x07FF) + 1) / -10.0f; } humidity = (data >> 6) & 0x7F; if (humidity <= 10) // actually the sensors sends 10 below working range of 20% humidity = 0; else if (humidity > 90) // actually the sensors sends 110 above working range of 90% humidity = 100; } bool ws_protocol_gt_wt_02_check() { if (!decode_data) return false; uint8_t sum = (decode_data >> 5) & 0xe; uint64_t temp_data = decode_data >> 9; for (uint8_t i = 0; i < 7; i++) { sum += (temp_data >> (i * 4)) & 0xF; } return ((uint8_t)(decode_data & 0x3F) == (sum & 0x3F)); } }; #endif