/* * fxpt_atan2.c * * Copyright (C) 2012, Xo Wang * * Hacked up to be a bit more ARM-friendly by: * Copyright (C) 2013 Jared Boone, ShareBrained Technology, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <math.h> #include <stdint.h> #include <stdlib.h> /** * Convert floating point to Q15 (1.0.15 fixed point) format. * * @param d floating-point value within range -1 to (1 - (2**-15)), inclusive * @return Q15 value representing d; same range */ /* static inline int16_t q15_from_double(const double d) { return lrint(d * 32768); } */ /** * Negative absolute value. Used to avoid undefined behavior for most negative * integer (see C99 standard 7.20.6.1.2 and footnote 265 for the description of * abs/labs/llabs behavior). * * @param i 16-bit signed integer * @return negative absolute value of i; defined for all values of i */ /* static inline int16_t s16_nabs(const int16_t j) { #if (((int16_t)-1) >> 1) == ((int16_t)-1) // signed right shift sign-extends (arithmetic) const int16_t negSign = ~(j >> 15); // splat sign bit into all 16 and complement // if j is positive (negSign is -1), xor will invert j and sub will add 1 // otherwise j is unchanged return (j ^ negSign) - negSign; #else return (j < 0 ? j : -j); #endif } */ /** * Q15 (1.0.15 fixed point) multiplication. Various common rounding modes are in * the function definition for reference (and preference). * * @param j 16-bit signed integer representing -1 to (1 - (2**-15)), inclusive * @param k same format as j * @return product of j and k, in same format */ static inline int16_t q15_mul(const int16_t j, const int16_t k) { const int32_t intermediate = j * k; #if 0 // don't round return intermediate >> 15; #elif 0 // biased rounding return (intermediate + 0x4000) >> 15; #else // unbiased rounding return (intermediate + ((intermediate & 0x7FFF) == 0x4000 ? 0 : 0x4000)) >> 15; #endif } /** * Q15 (1.0.15 fixed point) division (non-saturating). Be careful when using * this function, as it does not behave well when the result is out-of-range. * * Value is not defined if numerator is greater than or equal to denominator. * * @param numer 16-bit signed integer representing -1 to (1 - (2**-15)) * @param denom same format as numer; must be greater than numerator * @return numer / denom in same format as numer and denom */ static inline int16_t q15_div(const int16_t numer, const int16_t denom) { return (static_cast<int32_t>(numer) << 15) / denom; } /** * 16-bit fixed point four-quadrant arctangent. Given some Cartesian vector * (x, y), find the angle subtended by the vector and the positive x-axis. * * The value returned is in units of 1/65536ths of one turn. This allows the use * of the full 16-bit unsigned range to represent a turn. e.g. 0x0000 is 0 * radians, 0x8000 is pi radians, and 0xFFFF is (65535 / 32768) * pi radians. * * Because the magnitude of the input vector does not change the angle it * represents, the inputs can be in any signed 16-bit fixed-point format. * * @param y y-coordinate in signed 16-bit * @param x x-coordinate in signed 16-bit * @return angle in (val / 32768) * pi radian increments from 0x0000 to 0xFFFF */ static inline int16_t nabs(const int16_t j) { // return -abs(x); return (j < 0 ? j : -j); } int16_t fxpt_atan2(const int16_t y, const int16_t x) { static const int16_t k1 = 2847; static const int16_t k2 = 11039; if (x == y) { // x/y or y/x would return -1 since 1 isn't representable if (y > 0) { // 1/8 return 8192; } else if (y < 0) { // 5/8 return 40960; } else { // x = y = 0 return 0; } } const int16_t nabs_y = nabs(y); const int16_t nabs_x = nabs(x); if (nabs_x < nabs_y) { // octants 1, 4, 5, 8 const int16_t y_over_x = q15_div(y, x); const int16_t correction = q15_mul(k1, nabs(y_over_x)); const int16_t unrotated = q15_mul(k2 + correction, y_over_x); if (x > 0) { // octants 1, 8 return unrotated; } else { // octants 4, 5 return 32768 + unrotated; } } else { // octants 2, 3, 6, 7 const int16_t x_over_y = q15_div(x, y); const int16_t correction = q15_mul(k1, nabs(x_over_y)); const int16_t unrotated = q15_mul(k2 + correction, x_over_y); if (y > 0) { // octants 2, 3 return 16384 - unrotated; } else { // octants 6, 7 return 49152 - unrotated; } } }