/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ch.h" #include "test.h" #include "lpc43xx_cpp.hpp" #include "portapack_shared_memory.hpp" #include "portapack_dma.hpp" #include "gpdma.hpp" #include "baseband.hpp" #include "baseband_dma.hpp" #include "event_m4.hpp" #include "rssi.hpp" #include "rssi_dma.hpp" #include "touch_dma.hpp" #include "dsp_decimate.hpp" #include "dsp_demodulate.hpp" #include "dsp_fft.hpp" #include "dsp_fir_taps.hpp" #include "dsp_iir.hpp" #include "baseband_stats_collector.hpp" #include "rssi_stats_collector.hpp" #include "channel_stats_collector.hpp" #include "audio_stats_collector.hpp" #include "block_decimator.hpp" #include "clock_recovery.hpp" #include "access_code_correlator.hpp" #include "packet_builder.hpp" #include "message_queue.hpp" #include "utility.hpp" #include "debug.hpp" #include "audio.hpp" #include "audio_dma.hpp" #include "gcc.hpp" #include #include #include #include #include #include constexpr auto baseband_thread_priority = NORMALPRIO + 20; constexpr auto rssi_thread_priority = NORMALPRIO + 10; class ChannelDecimator { public: enum class DecimationFactor { By4, By8, By16, By32, }; ChannelDecimator( DecimationFactor f ) : decimation_factor { f } { } void set_decimation_factor(const DecimationFactor f) { decimation_factor = f; } buffer_c16_t execute(buffer_c8_t buffer) { auto decimated = execute_decimation(buffer); return decimated; } private: std::array work_baseband; const buffer_c16_t work_baseband_buffer { work_baseband.data(), work_baseband.size() }; const buffer_s16_t work_audio_buffer { (int16_t*)work_baseband.data(), sizeof(work_baseband) / sizeof(int16_t) }; //const bool fs_over_4_downconvert = true; dsp::decimate::TranslateByFSOver4AndDecimateBy2CIC3 translate; //dsp::decimate::DecimateBy2CIC3 cic_0; dsp::decimate::DecimateBy2CIC3 cic_1; dsp::decimate::DecimateBy2CIC3 cic_2; dsp::decimate::DecimateBy2CIC3 cic_3; dsp::decimate::DecimateBy2CIC3 cic_4; DecimationFactor decimation_factor { DecimationFactor::By32 }; buffer_c16_t execute_decimation(buffer_c8_t buffer) { /* 3.072MHz complex[2048], [-128, 127] * -> Shift by -fs/4 * -> 3rd order CIC: -0.1dB @ 0.028fs, -1dB @ 0.088fs, -60dB @ 0.468fs * -0.1dB @ 86kHz, -1dB @ 270kHz, -60dB @ 1.44MHz * -> gain of 256 * -> decimation by 2 * -> 1.544MHz complex[1024], [-32768, 32512] */ const auto stage_0_out = translate.execute(buffer, work_baseband_buffer); //if( fs_over_4_downconvert ) { // // TODO: //} else { // Won't work until cic_0 will accept input type of buffer_c8_t. // stage_0_out = cic_0.execute(buffer, work_baseband_buffer); //} /* 1.536MHz complex[1024], [-32768, 32512] * -> 3rd order CIC: -0.1dB @ 0.028fs, -1dB @ 0.088fs, -60dB @ 0.468fs * -0.1dB @ 43kHz, -1dB @ 136kHz, -60dB @ 723kHz * -> gain of 8 * -> decimation by 2 * -> 768kHz complex[512], [-8192, 8128] */ auto cic_1_out = cic_1.execute(stage_0_out, work_baseband_buffer); if( decimation_factor == DecimationFactor::By4 ) { return cic_1_out; } /* 768kHz complex[512], [-32768, 32512] * -> 3rd order CIC decimation by 2, gain of 1 * -> 384kHz complex[256], [-32768, 32512] */ auto cic_2_out = cic_2.execute(cic_1_out, work_baseband_buffer); if( decimation_factor == DecimationFactor::By8 ) { return cic_2_out; } /* 384kHz complex[256], [-32768, 32512] * -> 3rd order CIC decimation by 2, gain of 1 * -> 192kHz complex[128], [-32768, 32512] */ auto cic_3_out = cic_3.execute(cic_2_out, work_baseband_buffer); if( decimation_factor == DecimationFactor::By16 ) { return cic_3_out; } /* 192kHz complex[128], [-32768, 32512] * -> 3rd order CIC decimation by 2, gain of 1 * -> 96kHz complex[64], [-32768, 32512] */ auto cic_4_out = cic_4.execute(cic_3_out, work_baseband_buffer); return cic_4_out; } }; static constexpr iir_biquad_config_t audio_hpf_config { { 0.93346032f, -1.86687724f, 0.93346032f }, { 1.0f , -1.97730264f, 0.97773668f } }; static constexpr iir_biquad_config_t non_audio_hpf_config { { 0.51891061f, -0.95714180f, 0.51891061f }, { 1.0f , -0.79878302f, 0.43960231f } }; class FMSquelch { public: bool execute(buffer_s16_t audio) { // TODO: No hard-coded array size. std::array squelch_energy_buffer; const buffer_s16_t squelch_energy { squelch_energy_buffer.data(), squelch_energy_buffer.size() }; non_audio_hpf.execute(audio, squelch_energy); uint64_t max_squared = 0; for(const auto sample : squelch_energy_buffer) { const uint64_t sample_squared = sample * sample; if( sample_squared > max_squared ) { max_squared = sample_squared; } } return (max_squared < (threshold * threshold)); } private: static constexpr size_t N = 32; static constexpr int16_t threshold = 3072; // nyquist = 48000 / 2.0 // scipy.signal.iirdesign(wp=8000 / nyquist, ws= 4000 / nyquist, gpass=1, gstop=18, ftype='ellip') IIRBiquadFilter non_audio_hpf { non_audio_hpf_config }; }; static volatile bool channel_spectrum_request_update { false }; static std::array channel_spectrum; static uint32_t channel_spectrum_sampling_rate { 0 }; static uint32_t channel_filter_pass_frequency { 0 }; static uint32_t channel_filter_stop_frequency { 0 }; class BasebandProcessor { public: virtual ~BasebandProcessor() = default; virtual void execute(buffer_c8_t buffer) = 0; protected: void feed_channel_stats(const buffer_c16_t channel) { channel_stats.feed( channel, [this](const ChannelStatistics statistics) { this->post_channel_stats_message(statistics); } ); } void feed_channel_spectrum( const buffer_c16_t channel, const uint32_t filter_pass_frequency, const uint32_t filter_stop_frequency ) { channel_filter_pass_frequency = filter_pass_frequency; channel_filter_stop_frequency = filter_stop_frequency; channel_spectrum_decimator.feed( channel, [this](const buffer_c16_t data) { this->post_channel_spectrum_message(data); } ); } void fill_audio_buffer(const buffer_s16_t audio) { auto audio_buffer = audio::dma::tx_empty_buffer(); for(size_t i=0; i channel_spectrum_decimator { 4 }; ChannelStatsCollector channel_stats; ChannelStatisticsMessage channel_stats_message; AudioStatsCollector audio_stats; AudioStatisticsMessage audio_stats_message; void post_channel_stats_message(const ChannelStatistics statistics) { if( channel_stats_message.is_free() ) { channel_stats_message.statistics = statistics; shared_memory.application_queue.push(&channel_stats_message); } } void post_channel_spectrum_message(const buffer_c16_t data) { if( !channel_spectrum_request_update ) { channel_spectrum_request_update = true; std::copy(&data.p[0], &data.p[data.count], channel_spectrum.begin()); channel_spectrum_sampling_rate = data.sampling_rate; events_flag(EVT_MASK_SPECTRUM); } } void feed_audio_stats(const buffer_s16_t audio) { audio_stats.feed( audio, [this](const AudioStatistics statistics) { this->post_audio_stats_message(statistics); } ); } void post_audio_stats_message(const AudioStatistics statistics) { if( audio_stats_message.is_free() ) { audio_stats_message.statistics = statistics; shared_memory.application_queue.push(&audio_stats_message); } } }; class NarrowbandAMAudio : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { auto decimator_out = decimator.execute(buffer); const buffer_c16_t work_baseband_buffer { (complex16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 96kHz complex[64] * -> FIR filter, 48kHz int16_t[32] */ auto channel = channel_filter.execute(decimator_out, work_baseband_buffer); // TODO: Feed channel_stats post-decimation data? feed_channel_stats(channel); feed_channel_spectrum( channel, decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized, decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized ); const buffer_s16_t work_audio_buffer { (int16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 48kHz complex[32] * -> AM demodulation * -> 48kHz int16_t[32] */ auto audio = demod.execute(channel, work_audio_buffer); audio_hpf.execute_in_place(audio); fill_audio_buffer(audio); } private: ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By32 }; const fir_taps_real<64>& channel_filter_taps = taps_64_lp_031_070_tfilter; dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps }; dsp::demodulate::AM demod; IIRBiquadFilter audio_hpf { audio_hpf_config }; }; class NarrowbandFMAudio : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { /* Called every 2048/3072000 second -- 1500Hz. */ auto decimator_out = decimator.execute(buffer); const buffer_c16_t work_baseband_buffer { (complex16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 96kHz complex[64] * -> FIR filter, <6kHz (0.063fs) pass, gain 1.0 * -> 48kHz int16_t[32] */ auto channel = channel_filter.execute(decimator_out, work_baseband_buffer); // TODO: Feed channel_stats post-decimation data? feed_channel_stats(channel); feed_channel_spectrum( channel, decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized, decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized ); const buffer_s16_t work_audio_buffer { (int16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 48kHz complex[32] * -> FM demodulation * -> 48kHz int16_t[32] */ auto audio = demod.execute(channel, work_audio_buffer); static uint64_t audio_present_history = 0; const auto audio_present_now = squelch.execute(audio); audio_present_history = (audio_present_history << 1) | (audio_present_now ? 1 : 0); const bool audio_present = (audio_present_history != 0); if( !audio_present ) { // Zero audio buffer. for(size_t i=0; i& channel_filter_taps = taps_64_lp_042_078_tfilter; dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps }; dsp::demodulate::FM demod { 48000, 7500 }; IIRBiquadFilter audio_hpf { audio_hpf_config }; FMSquelch squelch; }; class WidebandFMAudio : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { auto decimator_out = decimator.execute(buffer); const buffer_s16_t work_audio_buffer { (int16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; auto channel = decimator_out; // TODO: Feed channel_stats post-decimation data? feed_channel_stats(channel); //feed_channel_spectrum(channel); /* 768kHz complex[512] * -> FM demodulation * -> 768kHz int16_t[512] */ /* TODO: To improve adjacent channel rejection, implement complex channel filter: * pass < +/- 100kHz, stop > +/- 200kHz */ auto audio_oversampled = demod.execute(decimator_out, work_audio_buffer); /* 768kHz int16_t[512] * -> 4th order CIC decimation by 2, gain of 1 * -> 384kHz int16_t[256] */ auto audio_8fs = audio_dec_1.execute(audio_oversampled, work_audio_buffer); /* 384kHz int16_t[256] * -> 4th order CIC decimation by 2, gain of 1 * -> 192kHz int16_t[128] */ auto audio_4fs = audio_dec_2.execute(audio_8fs, work_audio_buffer); /* 192kHz int16_t[128] * -> 4th order CIC decimation by 2, gain of 1 * -> 96kHz int16_t[64] */ auto audio_2fs = audio_dec_3.execute(audio_4fs, work_audio_buffer); /* 96kHz int16_t[64] * -> FIR filter, <15kHz (0.156fs) pass, >19kHz (0.198fs) stop, gain of 1 * -> 48kHz int16_t[32] */ auto audio = audio_filter.execute(audio_2fs, work_audio_buffer); /* -> 48kHz int16_t[32] */ audio_hpf.execute_in_place(audio); fill_audio_buffer(audio); } private: ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By4 }; //dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { taps_64_lp_031_070_tfilter }; dsp::demodulate::FM demod { 768000, 75000 }; dsp::decimate::DecimateBy2CIC4Real audio_dec_1; dsp::decimate::DecimateBy2CIC4Real audio_dec_2; dsp::decimate::DecimateBy2CIC4Real audio_dec_3; const fir_taps_real<64>& audio_filter_taps = taps_64_lp_156_198; dsp::decimate::FIR64AndDecimateBy2Real audio_filter { audio_filter_taps.taps }; IIRBiquadFilter audio_hpf { audio_hpf_config }; }; class FSKProcessor : public BasebandProcessor { public: FSKProcessor( MessageHandlerMap& message_handlers ) : message_handlers(message_handlers) { message_handlers[Message::ID::FSKConfiguration] = [this](const Message* const p) { auto m = reinterpret_cast(p); this->configure(m->configuration); }; } ~FSKProcessor() { message_handlers[Message::ID::FSKConfiguration] = nullptr; } void configure(const FSKConfiguration new_configuration) { clock_recovery.configure(new_configuration.symbol_rate, 76800); access_code_correlator.configure( new_configuration.access_code, new_configuration.access_code_length, new_configuration.access_code_tolerance ); packet_builder.configure(new_configuration.packet_length); } void execute(buffer_c8_t buffer) override { /* 2.4576MHz, 2048 samples */ auto decimator_out = decimator.execute(buffer); /* 153.6kHz, 128 samples */ const buffer_c16_t work_baseband_buffer { (complex16_t*)decimator_out.p, decimator_out.count }; /* 153.6kHz complex[128] * -> FIR filter, 76.8kHz int16_t[64] */ auto channel = channel_filter.execute(decimator_out, work_baseband_buffer); /* 76.8kHz, 64 samples */ feed_channel_stats(channel); feed_channel_spectrum( channel, decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized, decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized ); const auto symbol_handler_fn = [this](const float value) { const uint_fast8_t symbol = (value >= 0.0f) ? 1 : 0; const bool access_code_found = this->access_code_correlator.execute(symbol); this->consume_symbol(symbol, access_code_found); }; // 76.8k const buffer_s16_t work_demod_buffer { (int16_t*)decimator_out.p, decimator_out.count * sizeof(*decimator_out.p) / sizeof(int16_t) }; auto demodulated = demod.execute(channel, work_demod_buffer); i2s::i2s0::tx_mute(); for(size_t i=0; i& channel_filter_taps = taps_64_lp_031_070_tfilter; dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps }; dsp::demodulate::FM demod { 76800, 9600 * 2 }; ClockRecovery clock_recovery; AccessCodeCorrelator access_code_correlator; PacketBuilder packet_builder; FSKPacketMessage message; MessageHandlerMap& message_handlers; void consume_symbol( const uint_fast8_t symbol, const bool access_code_found ) { const auto payload_handler_fn = [this]( const std::bitset<256>& payload, const size_t bits_received ) { this->payload_handler(payload, bits_received); }; packet_builder.execute( symbol, access_code_found, payload_handler_fn ); } void payload_handler( const std::bitset<256>& payload, const size_t bits_received ) { if( message.is_free() ) { message.packet.payload = payload; message.packet.bits_received = bits_received; shared_memory.application_queue.push(&message); } } }; static const int8_t sintab[1024] = { 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 46, 47, 48, 49, 49, 50, 51, 51, 52, 53, 54, 54, 55, 56, 56, 57, 58, 58, 59, 60, 61, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 69, 69, 70, 71, 71, 72, 72, 73, 74, 74, 75, 76, 76, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 84, 84, 85, 85, 86, 86, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99, 100, 100, 101, 101, 102, 102, 102, 103, 103, 104, 104, 105, 105, 106, 106, 106, 107, 107, 108, 108, 109, 109, 109, 110, 110, 111, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116, 117, 117, 117, 118, 118, 118, 118, 119, 119, 119, 120, 120, 120, 120, 121, 121, 121, 121, 122, 122, 122, 122, 122, 123, 123, 123, 123, 123, 124, 124, 124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 125, 125, 125, 125, 125, 125, 125, 124, 124, 124, 124, 124, 124, 123, 123, 123, 123, 123, 122, 122, 122, 122, 122, 121, 121, 121, 121, 120, 120, 120, 120, 119, 119, 119, 118, 118, 118, 118, 117, 117, 117, 116, 116, 116, 115, 115, 115, 114, 114, 114, 113, 113, 113, 112, 112, 112, 111, 111, 111, 110, 110, 109, 109, 109, 108, 108, 107, 107, 106, 106, 106, 105, 105, 104, 104, 103, 103, 102, 102, 102, 101, 101, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 58, 58, 57, 56, 56, 55, 54, 54, 53, 52, 51, 51, 50, 49, 49, 48, 47, 46, 46, 45, 44, 44, 43, 42, 41, 41, 40, 39, 38, 38, 37, 36, 35, 35, 34, 33, 32, 32, 31, 30, 29, 29, 28, 27, 26, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 17, 16, 16, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 5, 5, 4, 3, 2, 2, 1, 0, -1, -2, -2, -3, -4, -5, -5, -6, -7, -8, -9, -9, -10, -11, -12, -12, -13, -14, -15, -16, -16, -17, -18, -19, -19, -20, -21, -22, -22, -23, -24, -25, -26, -26, -27, -28, -29, -29, -30, -31, -32, -32, -33, -34, -35, -35, -36, -37, -38, -38, -39, -40, -41, -41, -42, -43, -44, -44, -45, -46, -46, -47, -48, -49, -49, -50, -51, -51, -52, -53, -54, -54, -55, -56, -56, -57, -58, -58, -59, -60, -61, -61, -62, -63, -63, -64, -65, -65, -66, -67, -67, -68, -69, -69, -70, -71, -71, -72, -72, -73, -74, -74, -75, -76, -76, -77, -78, -78, -79, -79, -80, -81, -81, -82, -82, -83, -84, -84, -85, -85, -86, -86, -87, -88, -88, -89, -89, -90, -90, -91, -91, -92, -93, -93, -94, -94, -95, -95, -96, -96, -97, -97, -98, -98, -99, -99, -100, -100, -101, -101, -102, -102, -102, -103, -103, -104, -104, -105, -105, -106, -106, -106, -107, -107, -108, -108, -109, -109, -109, -110, -110, -111, -111, -111, -112, -112, -112, -113, -113, -113, -114, -114, -114, -115, -115, -115, -116, -116, -116, -117, -117, -117, -118, -118, -118, -118, -119, -119, -119, -120, -120, -120, -120, -121, -121, -121, -121, -122, -122, -122, -122, -122, -123, -123, -123, -123, -123, -124, -124, -124, -124, -124, -124, -125, -125, -125, -125, -125, -125, -125, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -125, -125, -125, -125, -125, -125, -125, -124, -124, -124, -124, -124, -124, -123, -123, -123, -123, -123, -122, -122, -122, -122, -122, -121, -121, -121, -121, -120, -120, -120, -120, -119, -119, -119, -118, -118, -118, -118, -117, -117, -117, -116, -116, -116, -115, -115, -115, -114, -114, -114, -113, -113, -113, -112, -112, -112, -111, -111, -111, -110, -110, -109, -109, -109, -108, -108, -107, -107, -106, -106, -106, -105, -105, -104, -104, -103, -103, -102, -102, -102, -101, -101, -100, -100, -99, -99, -98, -98, -97, -97, -96, -96, -95, -95, -94, -94, -93, -93, -92, -91, -91, -90, -90, -89, -89, -88, -88, -87, -86, -86, -85, -85, -84, -84, -83, -82, -82, -81, -81, -80, -79, -79, -78, -78, -77, -76, -76, -75, -74, -74, -73, -72, -72, -71, -71, -70, -69, -69, -68, -67, -67, -66, -65, -65, -64, -63, -63, -62, -61, -61, -60, -59, -58, -58, -57, -56, -56, -55, -54, -54, -53, -52, -51, -51, -50, -49, -49, -48, -47, -46, -46, -45, -44, -44, -43, -42, -41, -41, -40, -39, -38, -38, -37, -36, -35, -35, -34, -33, -32, -32, -31, -30, -29, -29, -28, -27, -26, -26, -25, -24, -23, -22, -22, -21, -20, -19, -19, -18, -17, -16, -16, -15, -14, -13, -12, -12, -11, -10, -9, -9, -8, -7, -6, -5, -5, -4, -3, -2, -2, -1 }; #define SAMPLES_PER_BIT 192 #define FILTER_SIZE 576 #define SAMPLE_BUFFER_SIZE SAMPLES_PER_BIT + FILTER_SIZE static int32_t waveform_biphase[] = { 165,167,168,168,167,166,163,160, 157,152,147,141,134,126,118,109, 99,88,77,66,53,41,27,14, 0,-14,-29,-44,-59,-74,-89,-105, -120,-135,-150,-165,-179,-193,-206,-218, -231,-242,-252,-262,-271,-279,-286,-291, -296,-299,-301,-302,-302,-300,-297,-292, -286,-278,-269,-259,-247,-233,-219,-202, -185,-166,-145,-124,-101,-77,-52,-26, 0,27,56,85,114,144,175,205, 236,266,296,326,356,384,412,439, 465,490,513,535,555,574,590,604, 616,626,633,637,639,638,633,626, 616,602,586,565,542,515,485,451, 414,373,329,282,232,178,121,62, 0,-65,-132,-202,-274,-347,-423,-500, -578,-656,-736,-815,-894,-973,-1051,-1128, -1203,-1276,-1347,-1415,-1479,-1540,-1596,-1648, -1695,-1736,-1771,-1799,-1820,-1833,-1838,-1835, -1822,-1800,-1767,-1724,-1670,-1605,-1527,-1437, -1334,-1217,-1087,-943,-785,-611,-423,-219, 0,235,487,755,1040,1341,1659,1994, 2346,2715,3101,3504,3923,4359,4811,5280, 5764,6264,6780,7310,7856,8415,8987,9573, 10172,10782,11404,12036,12678,13329,13989,14656, 15330,16009,16694,17382,18074,18767,19461,20155, 20848,21539,22226,22909,23586,24256,24918,25571, 26214,26845,27464,28068,28658,29231,29787,30325, 30842,31339,31814,32266,32694,33097,33473,33823, 34144,34437,34699,34931,35131,35299,35434,35535, 35602,35634,35630,35591,35515,35402,35252,35065, 34841,34579,34279,33941,33566,33153,32702,32214, 31689,31128,30530,29897,29228,28525,27788,27017, 26214,25379,24513,23617,22693,21740,20761,19755, 18725,17672,16597,15501,14385,13251,12101,10935, 9755,8563,7360,6148,4927,3701,2470,1235, 0,-1235,-2470,-3701,-4927,-6148,-7360,-8563, -9755,-10935,-12101,-13251,-14385,-15501,-16597,-17672, -18725,-19755,-20761,-21740,-22693,-23617,-24513,-25379, -26214,-27017,-27788,-28525,-29228,-29897,-30530,-31128, -31689,-32214,-32702,-33153,-33566,-33941,-34279,-34579, -34841,-35065,-35252,-35402,-35515,-35591,-35630,-35634, -35602,-35535,-35434,-35299,-35131,-34931,-34699,-34437, -34144,-33823,-33473,-33097,-32694,-32266,-31814,-31339, -30842,-30325,-29787,-29231,-28658,-28068,-27464,-26845, -26214,-25571,-24918,-24256,-23586,-22909,-22226,-21539, -20848,-20155,-19461,-18767,-18074,-17382,-16694,-16009, -15330,-14656,-13989,-13329,-12678,-12036,-11404,-10782, -10172,-9573,-8987,-8415,-7856,-7310,-6780,-6264, -5764,-5280,-4811,-4359,-3923,-3504,-3101,-2715, -2346,-1994,-1659,-1341,-1040,-755,-487,-235, 0,219,423,611,785,943,1087,1217, 1334,1437,1527,1605,1670,1724,1767,1800, 1822,1835,1838,1833,1820,1799,1771,1736, 1695,1648,1596,1540,1479,1415,1347,1276, 1203,1128,1051,973,894,815,736,656, 578,500,423,347,274,202,132,65, 0,-62,-121,-178,-232,-282,-329,-373, -414,-451,-485,-515,-542,-565,-586,-602, -616,-626,-633,-638,-639,-637,-633,-626, -616,-604,-590,-574,-555,-535,-513,-490, -465,-439,-412,-384,-356,-326,-296,-266, -236,-205,-175,-144,-114,-85,-56,-27, 0,26,52,77,101,124,145,166, 185,202,219,233,247,259,269,278, 286,292,297,300,302,302,301,299, 296,291,286,279,271,262,252,242, 231,218,206,193,179,165,150,135, 120,105,89,74,59,44,29,14, 0,-14,-27,-41,-53,-66,-77,-88, -99,-109,-118,-126,-134,-141,-147,-152, -157,-160,-163,-166,-167,-168,-168,-167 }; class RDSProcessor : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { for (size_t i = 0; i= 9) { s = 0; if(sample_count >= SAMPLES_PER_BIT) { cur_bit = (shared_memory.rdsdata[(bit_pos / 26) & 15]>>(25-(bit_pos % 26))) & 1; prev_output = cur_output; cur_output = prev_output ^ cur_bit; int32_t *src = waveform_biphase; int idx = in_sample_index; for(int j=0; j= SAMPLE_BUFFER_SIZE) idx = 0; } in_sample_index += SAMPLES_PER_BIT; if (in_sample_index >= SAMPLE_BUFFER_SIZE) in_sample_index -= SAMPLE_BUFFER_SIZE; bit_pos++; sample_count = 0; } sample = sample_buffer[out_sample_index]; sample_buffer[out_sample_index] = 0; out_sample_index++; if (out_sample_index >= SAMPLE_BUFFER_SIZE) out_sample_index = 0; //AM @ 228k/4=57kHz switch (mphase) { case 0: case 2: sample = 0; break; case 1: break; case 3: sample = -sample; break; } mphase++; if (mphase >= 4) mphase = 0; sample_count++; } else { s++; } //FM frq = (sample>>16) * 386760; phase = (phase + frq); sphase = phase + (256<<16); re = sintab[(sphase & 0x03FF0000)>>16]; im = sintab[(phase & 0x03FF0000)>>16]; buffer.p[i] = {(int8_t)re,(int8_t)im}; } } private: int8_t re, im; uint8_t mphase, s; uint32_t bit_pos; int32_t sample_buffer[SAMPLE_BUFFER_SIZE] = {0}; int32_t val; uint8_t prev_output = 0; uint8_t cur_output = 0; uint8_t cur_bit = 0; int sample_count = SAMPLES_PER_BIT; int in_sample_index = 0; int32_t sample; int out_sample_index = SAMPLE_BUFFER_SIZE-1; uint32_t phase, sphase; int32_t sig, frq, frq_im, rdsc; int32_t k; }; class LCRFSKProcessor : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { for (size_t i = 0; i= 9) { s = 0; fsk_samples_per_bit = shared_memory.fskspb; if(sample_count >= fsk_samples_per_bit) { cur_byte = shared_memory.lcrdata[bit_pos / 8]; if (!cur_byte) { //TransmitterModel::disable(); bit_pos = 0; cur_byte = shared_memory.lcrdata[0]; } cur_bit = cur_byte >> (7-(bit_pos % 8)) & 1; bit_pos++; sample_count = 0; } sample_count++; if (cur_bit) aphase += 267187; else aphase += 489844; sample = sintab[(aphase & 0x03FF0000)>>16]; } else { s++; } //FM frq = sample * 967; phase = (phase + frq); sphase = phase + (256<<16); re = sintab[(sphase & 0x03FF0000)>>16]; im = sintab[(phase & 0x03FF0000)>>16]; buffer.p[i] = {(int8_t)re,(int8_t)im}; } } private: uint32_t fsk_samples_per_bit; int8_t re, im; uint8_t s; uint32_t bit_pos; uint8_t cur_byte = 0; uint8_t cur_bit = 0; uint32_t sample_count; uint32_t aphase, phase, sphase; int32_t sample, sig, frq; }; static BasebandProcessor* baseband_processor { nullptr }; static BasebandConfiguration baseband_configuration; static baseband::Direction direction = baseband::Direction::Transmit; static WORKING_AREA(baseband_thread_wa, 8192); static __attribute__((noreturn)) msg_t baseband_fn(void *arg) { (void)arg; chRegSetThreadName("baseband"); BasebandStatsCollector stats; BasebandStatisticsMessage message; while(true) { if (direction == baseband::Direction::Transmit) { const auto buffer_tmp = baseband::dma::wait_for_tx_buffer(); const buffer_c8_t buffer { buffer_tmp.p, buffer_tmp.count, baseband_configuration.sampling_rate }; if( baseband_processor ) { baseband_processor->execute(buffer); } stats.process(buffer, [&message](const BasebandStatistics statistics) { if( message.is_free() ) { message.statistics = statistics; shared_memory.application_queue.push(&message); } } ); } else { const auto buffer_tmp = baseband::dma::wait_for_rx_buffer(); const buffer_c8_t buffer { buffer_tmp.p, buffer_tmp.count, baseband_configuration.sampling_rate }; if( baseband_processor ) { baseband_processor->execute(buffer); } stats.process(buffer, [&message](const BasebandStatistics statistics) { if( message.is_free() ) { message.statistics = statistics; shared_memory.application_queue.push(&message); } } ); } } } static WORKING_AREA(rssi_thread_wa, 128); static __attribute__((noreturn)) msg_t rssi_fn(void *arg) { (void)arg; chRegSetThreadName("rssi"); RSSIStatisticsCollector stats; RSSIStatisticsMessage message; while(true) { // TODO: Place correct sampling rate into buffer returned here: const auto buffer_tmp = rf::rssi::dma::wait_for_buffer(); const rf::rssi::buffer_t buffer { buffer_tmp.p, buffer_tmp.count, 400000 }; stats.process( buffer, [&message](const RSSIStatistics statistics) { if( message.is_free() ) { message.statistics = statistics; shared_memory.application_queue.push(&message); } } ); } } extern "C" { void __late_init(void) { /* After this call, scheduler, systick, heap, etc. are available. */ /* By doing chSysInit() here, it runs before C++ constructors, which may * require the heap. */ chSysInit(); } } static void init() { i2s::i2s0::configure( audio::i2s0_config_tx, audio::i2s0_config_rx, audio::i2s0_config_dma ); audio::dma::init(); audio::dma::configure(); audio::dma::enable(); i2s::i2s0::tx_start(); i2s::i2s0::rx_start(); LPC_CREG->DMAMUX = portapack::gpdma_mux; gpdma::controller.enable(); nvicEnableVector(DMA_IRQn, CORTEX_PRIORITY_MASK(LPC_DMA_IRQ_PRIORITY)); baseband::dma::init(); rf::rssi::init(); touch::dma::init(); chThdCreateStatic(baseband_thread_wa, sizeof(baseband_thread_wa), baseband_thread_priority, baseband_fn, nullptr ); chThdCreateStatic(rssi_thread_wa, sizeof(rssi_thread_wa), rssi_thread_priority, rssi_fn, nullptr ); } class EventDispatcher { public: MessageHandlerMap& message_handlers() { return message_map; } eventmask_t wait() { return chEvtWaitAny(ALL_EVENTS); } void dispatch(const eventmask_t events) { if( events & EVT_MASK_BASEBAND ) { handle_baseband_queue(); } if( events & EVT_MASK_SPECTRUM ) { handle_spectrum(); } } private: MessageHandlerMap message_map; ChannelSpectrumMessage spectrum_message; std::array spectrum_db; void handle_baseband_queue() { while( !shared_memory.baseband_queue.is_empty() ) { auto message = shared_memory.baseband_queue.pop(); auto& fn = message_map[message->id]; if( fn ) { fn(message); } message->state = Message::State::Free; } } void handle_spectrum() { if( channel_spectrum_request_update ) { /* Decimated buffer is full. Compute spectrum. */ std::array, 256> samples_swapped; fft_swap(channel_spectrum, samples_swapped); channel_spectrum_request_update = false; fft_c_preswapped(samples_swapped); if( spectrum_message.is_free() ) { for(size_t i=0; i .magnitude, or something more (less!) accurate. */ spectrum_message.spectrum.db = &spectrum_db; spectrum_message.spectrum.db_count = spectrum_db.size(); spectrum_message.spectrum.sampling_rate = channel_spectrum_sampling_rate; spectrum_message.spectrum.channel_filter_pass_frequency = channel_filter_pass_frequency; spectrum_message.spectrum.channel_filter_stop_frequency = channel_filter_stop_frequency; shared_memory.application_queue.push(&spectrum_message); } } } }; static void m0apptxevent_interrupt_enable() { nvicEnableVector(M0CORE_IRQn, CORTEX_PRIORITY_MASK(LPC43XX_M0APPTXEVENT_IRQ_PRIORITY)); } extern "C" { CH_IRQ_HANDLER(MAPP_IRQHandler) { CH_IRQ_PROLOGUE(); chSysLockFromIsr(); events_flag_isr(EVT_MASK_BASEBAND); chSysUnlockFromIsr(); creg::m0apptxevent::clear(); CH_IRQ_EPILOGUE(); } } std::array baseband_buffer; int main(void) { init(); events_initialize(chThdSelf()); m0apptxevent_interrupt_enable(); EventDispatcher event_dispatcher; auto& message_handlers = event_dispatcher.message_handlers(); //const auto baseband_buffer = new std::array(); message_handlers[Message::ID::BasebandConfiguration] = [&message_handlers](const Message* const p) { auto message = reinterpret_cast(p); if( message->configuration.mode != baseband_configuration.mode ) { // TODO: Timing problem around disabling DMA and nulling and deleting old processor auto old_p = baseband_processor; baseband_processor = nullptr; delete old_p; switch(message->configuration.mode) { case 1: direction = baseband::Direction::Receive; baseband_processor = new NarrowbandAMAudio(); break; case 2: direction = baseband::Direction::Receive; baseband_processor = new NarrowbandFMAudio(); break; case 3: direction = baseband::Direction::Receive; baseband_processor = new WidebandFMAudio(); break; case 4: direction = baseband::Direction::Receive; baseband_processor = new FSKProcessor(message_handlers); break; case 15: direction = baseband::Direction::Transmit; baseband_processor = new RDSProcessor(); break; case 16: direction = baseband::Direction::Transmit; baseband_processor = new LCRFSKProcessor(); break; default: break; } if( baseband_processor ) { if( direction == baseband::Direction::Receive ) { rf::rssi::start(); } baseband::dma::enable(direction); } else { baseband::dma::disable(); rf::rssi::stop(); } } baseband::dma::configure( baseband_buffer.data(), direction ); baseband_configuration = message->configuration; }; /* TODO: Ensure DMAs are configured to point at first LLI in chain. */ rf::rssi::dma::allocate(4, 400); touch::dma::allocate(); touch::dma::enable(); baseband::dma::configure( baseband_buffer.data(), direction ); //baseband::dma::allocate(4, 2048);d while(true) { const auto events = event_dispatcher.wait(); event_dispatcher.dispatch(events); } return 0; }