/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "proc_ook.hpp" #include "portapack_shared_memory.hpp" #include "sine_table_int8.hpp" #include "event_m4.hpp" #include inline void OOKProcessor::write_sample(const buffer_c8_t& buffer, uint8_t bit_value, size_t i) { int8_t re, im; if (bit_value) { phase = (phase + 200); // What ? sphase = phase + (64 << 18); re = (sine_table_i8[(sphase & 0x03FC0000) >> 18]); im = (sine_table_i8[(phase & 0x03FC0000) >> 18]); } else { re = 0; im = 0; } buffer.p[i] = {re, im}; } bool OOKProcessor::scan_init(unsigned int order) { if (order > MAX_DE_BRUIJN_ORDER) return false; scan_done = false; scan_progress = 0; k = 0; idx = 1; duval_symbols = 2; // 2 for binary, 3 for ternary encoders duval_length = 0; duval_bit = 0; duval_sample_bit = 0; duval_symbol = 0; memset(v, 0, sizeof(v)); return true; } bool OOKProcessor::scan_encode(const buffer_c8_t& buffer, size_t& buf_ptr) { // encode data: 0 = 1000, 1 = 1110 // @TODO: make this user-configurable const uint8_t sym[] = { 0b0001, 0b0111 }; constexpr auto symbol_length = 4; // iterate over every symbol in the sequence and convert it to bits with required bitrate for (; duval_bit < duval_length; duval_bit++) { auto val = v_tmp[duval_bit]; for (; duval_symbol < symbol_length; duval_symbol++) { auto s = sym[val] & (1 << duval_symbol); for (; duval_sample_bit < samples_per_bit; duval_sample_bit++) { if (buf_ptr >= buffer.count) { // buffer is full - continue next time txprogress_message.done = false; txprogress_message.progress = scan_progress++; shared_memory.application_queue.push(txprogress_message); return false; } write_sample(buffer, s, buf_ptr++); } duval_sample_bit = 0; } duval_symbol = 0; } duval_bit = 0; return true; } inline size_t OOKProcessor::duval_algo_step() { size_t buf_ptr = 0; const unsigned int w = de_bruijn_length; // Duval's algorithm for generating de Bruijn sequence while (idx) { if (w % idx == 0) { for (unsigned int k = 0; k < idx; k++) v_tmp[buf_ptr++] = v[k]; k = 0; } for (unsigned int j = 0; j < w - idx; j++) v[idx + j] = v[j]; for (idx = w; (idx > 0) && (v[idx - 1] >= duval_symbols - 1); idx--) ; if (idx) v[idx - 1]++; if (buf_ptr) { // we fill at most de_bruijn_length number of elements return buf_ptr; } } return 0; } void OOKProcessor::scan_process(const buffer_c8_t& buffer) { size_t buf_ptr = 0; // transmit any leftover bits from previous step if (!scan_encode(buffer, buf_ptr)) return; while (1) { // calculate next chunk of deBruijn sequence duval_length = duval_algo_step(); if (duval_length == 0) { // last chunk - done if (!scan_done) { txprogress_message.done = true; shared_memory.application_queue.push(txprogress_message); } scan_done = 1; // clear the remaining buffer in case we have any bytes left for (size_t i = buf_ptr; i < buffer.count; i++) buffer.p[i] = { 0, 0 }; break; } duval_bit = 0; duval_sample_bit = 0; duval_symbol = 0; // encode the sequence into required format if (!scan_encode(buffer, buf_ptr)) break; } } void OOKProcessor::execute(const buffer_c8_t& buffer) { // This is called at 2.28M/2048 = 1113Hz if (!configured) return; if (de_bruijn_length) { scan_process(buffer); return; } for (size_t i = 0; i < buffer.count; i++) { // Synthesis at 2.28M/10 = 228kHz if (!s) { s = 10 - 1; if (sample_count >= samples_per_bit) { if (configured) { if (bit_pos >= length) { // End of data if (pause_counter == 0) { pause_counter = pause; cur_bit = 0; } else if (pause_counter == 1) { if (repeat_counter < repeat) { // Repeat cur_bit = shared_memory.bb_data.data[0] & 0x80; txprogress_message.progress = repeat_counter + 1; txprogress_message.done = false; shared_memory.application_queue.push(txprogress_message); bit_pos = 1; repeat_counter++; } else { // Stop cur_bit = 0; txprogress_message.done = true; shared_memory.application_queue.push(txprogress_message); configured = false; } pause_counter = 0; } else { pause_counter--; } } else { cur_bit = (shared_memory.bb_data.data[bit_pos >> 3] << (bit_pos & 7)) & 0x80; bit_pos++; } } sample_count = 0; } else { sample_count++; } } else { s--; } write_sample(buffer, cur_bit, i); } } void OOKProcessor::on_message(const Message* const p) { const auto message = *reinterpret_cast(p); if (message.id == Message::ID::OOKConfigure) { configured = false; repeat = message.repeat - 1; length = message.stream_length; pause = message.pause_symbols + 1; de_bruijn_length = message.de_bruijn_length; samples_per_bit = message.samples_per_bit; if (!length && !samples_per_bit) { // shutdown return; } if (de_bruijn_length) { if (!scan_init(de_bruijn_length)) return; } else { samples_per_bit /= 10; } pause_counter = 0; s = 0; sample_count = samples_per_bit; repeat_counter = 0; bit_pos = 0; cur_bit = 0; txprogress_message.progress = 0; txprogress_message.done = false; configured = true; } } int main() { EventDispatcher event_dispatcher { std::make_unique() }; event_dispatcher.run(); return 0; }