/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2020 euquiq * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ui_looking_glass_app.hpp" using namespace portapack; namespace ui { void GlassView::focus() { button_marker.focus(); } GlassView::~GlassView() { receiver_model.set_sampling_rate(3072000); // Just a hack to avoid hanging other apps receiver_model.disable(); baseband::shutdown(); } // Returns the next multiple of num that is a multiple of multiplier int64_t GlassView::next_mult_of(int64_t num, int64_t multiplier) { return ((num / multiplier) + 1) * multiplier; } void GlassView::adjust_range(int64_t* f_min, int64_t* f_max, int64_t width) { int64_t span = *f_max - *f_min; int64_t num_intervals = span / width; if( span % width != 0 ) { num_intervals++; } int64_t new_span = num_intervals * width; int64_t delta_span = (new_span - span) / 2; *f_min -= delta_span; *f_max += delta_span; } void GlassView::on_lna_changed(int32_t v_db) { receiver_model.set_lna(v_db); } void GlassView::on_vga_changed(int32_t v_db) { receiver_model.set_vga(v_db); } void GlassView::reset_live_view( bool clear_screen ) { max_freq_hold = 0 ; max_freq_power = -1000 ; if( clear_screen ) { // only clear screen in peak mode if( live_frequency_view == 2 ) { display.fill_rectangle( { { 0 , 108 + 16 } , { 240 , 320 - (108 + 16) } } , { 0 , 0 , 0 } ); } } } void GlassView::add_spectrum_pixel( uint8_t power ) { static int64_t last_max_freq = 0 ; spectrum_row[pixel_index] = spectrum_rgb3_lut[power] ; // row of colors spectrum_data[pixel_index] = ( live_frequency_integrate * spectrum_data[pixel_index] + power ) / (live_frequency_integrate + 1); // smoothing pixel_index ++ ; if (pixel_index == 240) // got an entire waterfall line { if( live_frequency_view > 0 ) { constexpr int rssi_sample_range = 256; constexpr float rssi_voltage_min = 0.4; constexpr float rssi_voltage_max = 2.2; constexpr float adc_voltage_max = 3.3; constexpr int raw_min = rssi_sample_range * rssi_voltage_min / adc_voltage_max; constexpr int raw_max = rssi_sample_range * rssi_voltage_max / adc_voltage_max; constexpr int raw_delta = raw_max - raw_min; const range_t y_max_range { 0 , 320 - ( 108 + 16 ) }; //drawing and keeping track of max freq for( uint16_t xpos = 0 ; xpos < 240 ; xpos ++ ) { // save max powerwull freq if( spectrum_data[ xpos ] > max_freq_power ) { max_freq_power = spectrum_data[ xpos ]; max_freq_hold = f_min + ( (f_max - f_min) * xpos) / 240 ; } int16_t point = y_max_range.clip( ( ( spectrum_data[ xpos ] - raw_min ) * ( 320 - ( 108 + 16 ) ) ) / raw_delta ); uint8_t color_gradient = (point * 255) / 212 ; // clear if not in peak view if( live_frequency_view != 2 ) { display.fill_rectangle( { { xpos , 108 + 16 } , { 1 , 320 - point } } , { 0 , 0 , 0 } ); } display.fill_rectangle( { { xpos , 320 - point } , { 1 , point } } , { color_gradient , 0 , uint8_t( 255 - color_gradient ) } ); } if( last_max_freq != max_freq_hold ) { last_max_freq = max_freq_hold ; freq_stats.set( "MAX HOLD: "+to_string_short_freq( max_freq_hold ) ); } PlotMarker( marker ); } else { display.draw_pixels({{0, display.scroll(1)}, {240, 1}}, spectrum_row); // new line at top, one less var, speedier } pixel_index = 0; // Start New cascade line } } // Apparently, the spectrum object returns an array of 256 bins // Each having the radio signal power for it's corresponding frequency slot void GlassView::on_channel_spectrum(const ChannelSpectrum &spectrum) { // default fast scan offset uint8_t offset = 2 ; baseband::spectrum_streaming_stop(); if( fast_scan || ( LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX ) ) { // Convert bins of this spectrum slice into a representative max_power and when enough, into pixels // Spectrum.db has 256 bins. // All things said and done, we actually need 240 of those bins for (uint8_t bin = 0; bin < 240; bin++) { // if the view is done in one pass, show it like in analog_audio_app if( ( LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX ) ) { // Center 16 bins are ignored (DC spike is blanked) if (bin < 120) { if (spectrum.db[256 - 120 + bin] > max_power) // 134 max_power = spectrum.db[256 - 120 + bin]; } else { if (spectrum.db[ bin - 120] > max_power) // 118 max_power = spectrum.db[bin - 120]; } } else // view is made in multiple pass, use original bin picking { // Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored if (bin < 120) { if (spectrum.db[134 + bin] > max_power) // 134 max_power = spectrum.db[134 + bin]; } else { if (spectrum.db[bin - 118] > max_power) // 118 max_power = spectrum.db[bin - 118]; } } if( bin == 120 ) { bins_Hz_size += 12 * each_bin_size; // add DC bin Hz count into the "pixel fulfilled bag of Hz" } else { bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz" } if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled { if (min_color_power < max_power) add_spectrum_pixel(max_power); // Pixel will represent max_power else add_spectrum_pixel(0); // Filtered out, show black max_power = 0; if (!pixel_index) // Received indication that a waterfall line has been completed { bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" f_center = f_center_ini - offset * each_bin_size ; // Start a new sweep radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving chThdSleepMilliseconds(10); baseband::spectrum_streaming_start(); // Do the RX return; } bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel } } f_center += ( 256 - ( 2 * offset ) ) * each_bin_size ; // Move into the next bandwidth slice NOTE: spectrum.sampling_rate = LOOKING_GLASS_SLICE_WIDTH // lost bins are taken in account so next slice first ignored bins overlap previous kept ones } else //slow scan { offset = 32 ; uint8_t bin_length = 80 ; for (uint8_t bin = offset ; bin < bin_length + offset ; bin++) { if (bin < 120) { if (spectrum.db[134 + bin] > max_power) // 134 max_power = spectrum.db[134 + bin]; } else { if (spectrum.db[bin - 118] > max_power) // 118 max_power = spectrum.db[bin - 118]; } bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz" if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled { if (min_color_power < max_power) add_spectrum_pixel(max_power); // Pixel will represent max_power else add_spectrum_pixel(0); // Filtered out, show black max_power = 0; if (!pixel_index) // Received indication that a waterfall line has been completed { bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" f_center = f_center_ini - offset * each_bin_size ; // Start a new sweep radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving chThdSleepMilliseconds(10); baseband::spectrum_streaming_start(); // Do the RX return; } bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel } } f_center += bin_length * each_bin_size ; } radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving chThdSleepMilliseconds(5); baseband::spectrum_streaming_start(); // Do the RX } void GlassView::on_hide() { baseband::spectrum_streaming_stop(); display.scroll_disable(); } void GlassView::on_show() { display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates baseband::spectrum_streaming_start(); } void GlassView::on_range_changed() { reset_live_view( false ); f_min = field_frequency_min.value(); f_max = field_frequency_max.value(); search_span = f_max - f_min; if( locked_range ) { button_range.set_text(">"+to_string_dec_uint(search_span)+"<"); } else { button_range.set_text(" "+to_string_dec_uint(search_span)+" "); } f_min = (f_min)*MHZ_DIV; // Transpose into full frequency realm f_max = (f_max)*MHZ_DIV; adjust_range( &f_min , &f_max , 240 ); marker_pixel_step = (f_max - f_min) / 240; // Each pixel value in Hz marker = f_min + (f_max - f_min) / 2 ; button_marker.set_text( to_string_short_freq( marker ) ); PlotMarker( marker ); // Refresh marker on screen pixel_index = 0; // reset pixel counter max_power = 0; bins_Hz_size = 0; // reset amount of Hz filled up by pixels if( (f_max - f_min) <= LOOKING_GLASS_SLICE_WIDTH_MAX ) { LOOKING_GLASS_SLICE_WIDTH = (f_max - f_min) ; receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH/2); } else if( LOOKING_GLASS_SLICE_WIDTH != LOOKING_GLASS_SLICE_WIDTH_MAX ) { LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX ; receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH); } if( next_mult_of( LOOKING_GLASS_SLICE_WIDTH , 256 ) > LOOKING_GLASS_SLICE_WIDTH_MAX ) LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX ; else LOOKING_GLASS_SLICE_WIDTH = next_mult_of( LOOKING_GLASS_SLICE_WIDTH , 256 ); receiver_model.set_squelch_level(0); each_bin_size = LOOKING_GLASS_SLICE_WIDTH / 256 ; f_center_ini = f_min + (LOOKING_GLASS_SLICE_WIDTH / 2) ; // Initial center frequency for sweep f_center = f_center_ini ; // Reset sweep into first slice baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value()); receiver_model.set_tuning_frequency(f_center_ini); // tune rx for this slice } void GlassView::PlotMarker(rf::Frequency pos) { pos -= f_min; pos = pos / marker_pixel_step; // Real pixel uint8_t shift_y = 0 ; if( live_frequency_view > 0 ) // plot one line down when in live view { shift_y = 16 ; } portapack::display.fill_rectangle({0, 100 + shift_y, 240, 8}, Color::black()); // Clear old marker and whole marker rectangle btw portapack::display.fill_rectangle({(int)pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top portapack::display.fill_rectangle({(int)pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle portapack::display.fill_rectangle({(int)pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom } GlassView::GlassView( NavigationView &nav) : nav_(nav) { baseband::run_image(portapack::spi_flash::image_tag_wideband_spectrum); add_children({&labels, &field_frequency_min, &field_frequency_max, &field_lna, &field_vga, &button_range, &steps_config, &scan_type, &view_config, &level_integration, &filter_config, &field_rf_amp, &range_presets, &button_marker, &field_trigger, &button_jump, &button_rst, &freq_stats}); load_Presets(); // Load available presets from TXT files (or default) field_frequency_min.on_change = [this](int32_t v) { reset_live_view( true ); int32_t min_size = steps ; if( locked_range ) min_size = search_span ; if( min_size < 2 ) min_size = 2 ; if( v > 7200 - min_size ) { v = 7200 - min_size ; field_frequency_min.set_value( v ); } if (v > (field_frequency_max.value() - min_size ) ) field_frequency_max.set_value( v + min_size ); if( locked_range ) field_frequency_max.set_value( v + min_size ); this->on_range_changed(); }; field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset field_frequency_min.set_step( steps ); field_frequency_min.on_select = [this, &nav](NumberField& field) { auto new_view = nav_.push(field_frequency_min.value()*1000000); new_view->on_changed = [this, &field](rf::Frequency f) { int32_t freq = f / 1000000 ; int32_t min_size = steps ; if( locked_range ) min_size = search_span ; if( min_size < 2 ) min_size = 2 ; if( freq > (7200 - min_size ) ) freq = 7200 - min_size ; field_frequency_min.set_value( freq ); if( field_frequency_max.value() < ( freq + min_size ) ) field_frequency_max.set_value( freq + min_size ); this->on_range_changed(); }; }; field_frequency_max.on_change = [this](int32_t v) { reset_live_view( true ); int32_t min_size = steps ; if( locked_range ) min_size = search_span ; if( min_size < 2 ) min_size = 2 ; if( v < min_size ) { v = min_size ; field_frequency_max.set_value( v ); } if (v < (field_frequency_min.value() + min_size) ) field_frequency_min.set_value(v - min_size); if( locked_range ) field_frequency_min.set_value( v - min_size ); this->on_range_changed(); }; field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset field_frequency_max.set_step( steps ); field_frequency_max.on_select = [this, &nav](NumberField& field) { auto new_view = nav_.push(field_frequency_max.value()*1000000); new_view->on_changed = [this, &field](rf::Frequency f) { int32_t min_size = steps ; if( locked_range ) min_size = search_span ; if( min_size < 2 ) min_size = 2 ; int32_t freq = f / 1000000 ; if( freq < min_size ) freq = min_size ; field_frequency_max.set_value( freq ); if( field_frequency_min.value() > ( freq - min_size) ) field_frequency_min.set_value( freq - min_size ); this->on_range_changed(); }; }; field_lna.on_change = [this](int32_t v) { reset_live_view( true ); this->on_lna_changed(v); }; field_lna.set_value(receiver_model.lna()); field_vga.on_change = [this](int32_t v_db) { reset_live_view( true ); this->on_vga_changed(v_db); }; field_vga.set_value(receiver_model.vga()); steps_config.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; field_frequency_min.set_step( v ); field_frequency_max.set_step( v ); steps = v ; }; steps_config.set_selected_index(0); //default of 1 Mhz steps scan_type.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; fast_scan = v ; }; scan_type.set_selected_index(0); // default legacy fast scan view_config.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; // clear between changes reset_live_view( true ); if( v == 0 ) { live_frequency_view = 0 ; level_integration.hidden( true ); freq_stats.hidden( true ); button_jump.hidden( true ); button_rst.hidden( true ); display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates } else if( v == 1 ) { display.fill_rectangle( { { 0 , 108 } , { 240 , 24 } } , { 0 , 0 , 0 } ); live_frequency_view = 1 ; display.scroll_disable(); level_integration.hidden( false ); freq_stats.hidden( false ); button_jump.hidden( false ); button_rst.hidden( false ); } else if( v == 2 ) { display.fill_rectangle( { { 0 , 108 } , { 240 , 24 } } , { 0 , 0 , 0 } ); live_frequency_view = 2 ; display.scroll_disable(); level_integration.hidden( false ); freq_stats.hidden( false ); button_jump.hidden( false ); button_rst.hidden( false ); } set_dirty(); }; view_config.set_selected_index(0); //default spectrum level_integration.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; reset_live_view( true ); live_frequency_integrate = v ; }; level_integration.set_selected_index(3); //default integration of ( 3 * old value + new_value ) / 4 filter_config.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; reset_live_view( true ); min_color_power = v; }; filter_config.set_selected_index(0); range_presets.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; field_frequency_min.set_value(presets_db[v].min, false); field_frequency_max.set_value(presets_db[v].max, false); this->on_range_changed(); }; button_marker.on_change = [this]() { marker = marker + button_marker.get_encoder_delta() * marker_pixel_step ; if( marker < f_min ) marker = f_min ; if( marker > f_max ) marker = f_max ; button_marker.set_text( to_string_short_freq( marker ) ); button_marker.set_encoder_delta( 0 ); PlotMarker( marker ); // Refresh marker on screen }; button_marker.on_select = [this](ButtonWithEncoder &) { receiver_model.set_tuning_frequency(marker); // Center tune rx in marker freq. receiver_model.set_frequency_step(MHZ_DIV); // Preset a 1 MHz frequency step into RX -> AUDIO nav_.pop(); nav_.push(); // Jump into audio view }; field_trigger.on_change = [this](int32_t v) { baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, v); }; field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution button_range.on_select = [this](Button&) { if( locked_range ) { locked_range = false ; button_range.set_style(&style_white); button_range.set_text(" "+to_string_dec_uint(search_span)+" "); } else { locked_range = true ; button_range.set_style(&style_red); button_range.set_text(">"+to_string_dec_uint(search_span)+"<"); } }; button_jump.on_select = [this](Button&) { receiver_model.set_tuning_frequency(max_freq_hold); // Center tune rx in marker freq. receiver_model.set_frequency_step(MHZ_DIV); // Preset a 1 MHz frequency step into RX -> AUDIO nav_.pop(); nav_.push(); // Jump into audio view }; button_rst.on_select = [this](Button&) { reset_live_view( true ); }; display.scroll_set_area(109, 319); baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value()); // trigger: // Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute , // it keeps adding the output of the fft to the buffer until "trigger" number of calls are made, // at which time it pushes the buffer up with channel_spectrum.feed on_range_changed(); receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis); receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); // 20mhz receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz receiver_model.set_squelch_level(0); receiver_model.enable(); } void GlassView::load_Presets() { File presets_file; // LOAD /WHIPCALC/ANTENNAS.TXT from microSD auto result = presets_file.open("LOOKINGGLASS/PRESETS.TXT"); presets_db.clear(); // Start with fresh db if (result.is_valid()) { presets_Default(); // There is no txt, store a default range } else { std::string line; // There is a txt file char one_char[1]; // Read it char by char for (size_t pointer = 0; pointer < presets_file.size(); pointer++) { presets_file.seek(pointer); presets_file.read(one_char, 1); if ((int)one_char[0] > 31) { // ascii space upwards line += one_char[0]; // Add it to the textline } else if (one_char[0] == '\n') { // New Line txtline_process(line); // make sense of this textline line.clear(); // Ready for next textline } } if (line.length() > 0) txtline_process(line); // Last line had no newline at end ? if (!presets_db.size()) presets_Default(); // no antenna on txt, use default } populate_Presets(); } void GlassView::txtline_process(std::string &line) { if (line.find("#") != std::string::npos) return; // Line is just a comment size_t comma = line.find(","); // Get first comma position if (comma == std::string::npos) return; // No comma at all size_t previous = 0; preset_entry new_preset; new_preset.min = std::stoi(line.substr(0, comma)); if (!new_preset.min) return; // No frequency! previous = comma + 1; comma = line.find(",", previous); // Search for next delimiter if (comma == std::string::npos) return; // No comma at all new_preset.max = std::stoi(line.substr(previous, comma - previous)); if (!new_preset.max) return; // No frequency! new_preset.label = line.substr(comma + 1); if (new_preset.label.size() == 0) return; // No label ? presets_db.push_back(new_preset); // Add this preset. } void GlassView::populate_Presets() { using option_t = std::pair; using options_t = std::vector; options_t entries; for (preset_entry preset : presets_db) { // go thru all available presets entries.emplace_back(preset.label, entries.size()); } range_presets.set_options(entries); } void GlassView::presets_Default() { presets_db.clear(); presets_db.push_back({2320, 2560, "DEFAULT WIFI 2.4GHz"}); } }