/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "proc_ook.hpp" #include "portapack_shared_memory.hpp" #include "sine_table_int8.hpp" #include "event_m4.hpp" #include inline void OOKProcessor::write_sample(const buffer_c8_t& buffer, uint8_t bit_value, size_t i) { int8_t re, im; if (bit_value) { phase = (phase + 200); // What ? sphase = phase + (64 << 18); re = (sine_table_i8[(sphase & 0x03FC0000) >> 18]); im = (sine_table_i8[(phase & 0x03FC0000) >> 18]); } else { re = 0; im = 0; } buffer.p[i] = {re, im}; } inline void OOKProcessor::duval_algo(const buffer_c8_t& buffer) { size_t buf_ptr = 0; const unsigned int w = de_bruijn_length; // Duval's algorithm for generating de Bruijn sequence while (idx) { if (w % idx == 0) { for (; k < idx; k++) { size_t available_size = buffer.count - buf_ptr; size_t len = (samples_per_bit > available_size) ? available_size : samples_per_bit; for (; bit_ptr < len; bit_ptr++) { write_sample(buffer, v[k], buf_ptr); buf_ptr++; } if (buf_ptr == buffer.count) { txprogress_message.done = false; txprogress_message.progress = scan_progress++; shared_memory.application_queue.push(txprogress_message); return; } bit_ptr = 0; } k = 0; } for (unsigned int j = 0; j < w - idx; j++) v[idx + j] = v[j]; for (idx = w; idx > 0 && v[idx - 1]; idx--) ; if (idx) v[idx - 1] = 1; } // clear the buffer in case we have any bytes left if (buf_ptr < buffer.count) { for (size_t i = buf_ptr; i < buffer.count; i++) { buffer.p[i] = {0, 0}; } } if (!scan_done) { txprogress_message.done = true; shared_memory.application_queue.push(txprogress_message); } scan_done = 1; } void OOKProcessor::execute(const buffer_c8_t& buffer) { // This is called at 2.28M/2048 = 1113Hz if (!configured) return; if (de_bruijn_length) { duval_algo(buffer); return; } for (size_t i = 0; i < buffer.count; i++) { // Synthesis at 2.28M/10 = 228kHz if (!s) { s = 10 - 1; if (sample_count >= samples_per_bit) { if (configured) { if (bit_pos >= length) { // End of data if (pause_counter == 0) { pause_counter = pause; cur_bit = 0; } else if (pause_counter == 1) { if (repeat_counter < repeat) { // Repeat cur_bit = shared_memory.bb_data.data[0] & 0x80; txprogress_message.progress = repeat_counter + 1; txprogress_message.done = false; shared_memory.application_queue.push(txprogress_message); bit_pos = 1; repeat_counter++; } else { // Stop cur_bit = 0; txprogress_message.done = true; shared_memory.application_queue.push(txprogress_message); configured = false; } pause_counter = 0; } else { pause_counter--; } } else { cur_bit = (shared_memory.bb_data.data[bit_pos >> 3] << (bit_pos & 7)) & 0x80; bit_pos++; } } sample_count = 0; } else { sample_count++; } } else { s--; } write_sample(buffer, cur_bit, i); } } void OOKProcessor::on_message(const Message* const p) { const auto message = *reinterpret_cast(p); if (message.id == Message::ID::OOKConfigure) { configured = false; repeat = message.repeat - 1; length = message.stream_length; pause = message.pause_symbols + 1; de_bruijn_length = message.de_bruijn_length; samples_per_bit = message.samples_per_bit; if (!length && !samples_per_bit) { // shutdown return; } if (de_bruijn_length) { if (de_bruijn_length > sizeof(v)) { return; } if (samples_per_bit > 2048) { // can't handle more than dma::transfer_samples return; } k = 0; bit_ptr = 0; idx = 1; scan_done = false; scan_progress = 0; memset(v, 0, sizeof(v)); } else { samples_per_bit /= 10; } pause_counter = 0; s = 0; sample_count = samples_per_bit; repeat_counter = 0; bit_pos = 0; cur_bit = 0; txprogress_message.progress = 0; txprogress_message.done = false; configured = true; } } int main() { EventDispatcher event_dispatcher { std::make_unique() }; event_dispatcher.run(); return 0; }