/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * Copyright (C) 2023 TJ Baginski * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "proc_ble_tx.hpp" #include "portapack_shared_memory.hpp" #include "sine_table_int8.hpp" #include "event_m4.hpp" #include #define new_way int BTLETxProcessor::gen_sample_from_phy_bit(char* bit, char* sample, int num_bit) { int num_sample = (num_bit * SAMPLE_PER_SYMBOL) + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL); int8_t* tmp_phy_bit_over_sampling_int8 = (int8_t*)tmp_phy_bit_over_sampling; int i, j; for (i = 0; i < (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1); i++) { tmp_phy_bit_over_sampling_int8[i] = 0; } for (i = (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1 + num_bit * SAMPLE_PER_SYMBOL); i < (2 * LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 2 + num_bit * SAMPLE_PER_SYMBOL); i++) { tmp_phy_bit_over_sampling_int8[i] = 0; } for (i = 0; i < (num_bit * SAMPLE_PER_SYMBOL); i++) { if (i % SAMPLE_PER_SYMBOL == 0) { tmp_phy_bit_over_sampling_int8[i + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1)] = (bit[i / SAMPLE_PER_SYMBOL]) * 2 - 1; } else { tmp_phy_bit_over_sampling_int8[i + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1)] = 0; } } int16_t tmp = 0; sample[0] = cos_table_int8[tmp]; sample[1] = sin_table_int8[tmp]; int len_conv_result = num_sample - 1; for (i = 0; i < len_conv_result; i++) { int16_t acc = 0; for (j = 3; j < (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 4); j++) { acc = acc + gauss_coef_int8[(LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL) - j - 1] * tmp_phy_bit_over_sampling_int8[i + j]; } tmp = (tmp + acc) & 1023; sample[(i + 1) * 2 + 0] = cos_table_int8[tmp]; sample[(i + 1) * 2 + 1] = sin_table_int8[tmp]; } return (num_sample); } void BTLETxProcessor::octet_hex_to_bit(char* hex, char* bit) { char tmp_hex[3]; tmp_hex[0] = hex[0]; tmp_hex[1] = hex[1]; tmp_hex[2] = 0; int n = strtol(tmp_hex, NULL, 16); bit[0] = 0x01 & (n >> 0); bit[1] = 0x01 & (n >> 1); bit[2] = 0x01 & (n >> 2); bit[3] = 0x01 & (n >> 3); bit[4] = 0x01 & (n >> 4); bit[5] = 0x01 & (n >> 5); bit[6] = 0x01 & (n >> 6); bit[7] = 0x01 & (n >> 7); } int BTLETxProcessor::convert_hex_to_bit(char* hex, char* bit, int stream_flip, int octet_limit) { int num_hex_orig = strlen(hex); int i, num_hex; num_hex = num_hex_orig; for (i = 0; i < num_hex_orig; i++) { if (!((hex[i] >= 48 && hex[i] <= 57) || (hex[i] >= 65 && hex[i] <= 70) || (hex[i] >= 97 && hex[i] <= 102))) // not a hex num_hex--; } if (num_hex % 2 != 0) { return (-1); } if (num_hex > (octet_limit * 2)) { return (-1); } if (num_hex <= 1) { // NULL data return (-1); } char tmp_str[max_char]; if (stream_flip == 1) { strcpy(tmp_str, hex); for (i = 0; i < num_hex; i = i + 2) { hex[num_hex - i - 2] = tmp_str[i]; hex[num_hex - i - 1] = tmp_str[i + 1]; } } int num_bit = num_hex * 4; int j; for (i = 0; i < num_hex; i = i + 2) { j = i * 4; octet_hex_to_bit(hex + i, bit + j); } return (num_bit); } void BTLETxProcessor::crc24(char* bit_in, int num_bit, char* init_hex, char* crc_result) { char bit_store[24], bit_store_update[24]; int i; convert_hex_to_bit(init_hex, bit_store, 0, 3); for (i = 0; i < num_bit; i++) { char new_bit = (bit_store[23] + bit_in[i]) % 2; bit_store_update[0] = new_bit; bit_store_update[1] = (bit_store[0] + new_bit) % 2; bit_store_update[2] = bit_store[1]; bit_store_update[3] = (bit_store[2] + new_bit) % 2; bit_store_update[4] = (bit_store[3] + new_bit) % 2; bit_store_update[5] = bit_store[4]; bit_store_update[6] = (bit_store[5] + new_bit) % 2; bit_store_update[7] = bit_store[6]; bit_store_update[8] = bit_store[7]; bit_store_update[9] = (bit_store[8] + new_bit) % 2; bit_store_update[10] = (bit_store[9] + new_bit) % 2; memcpy(bit_store_update + 11, bit_store + 10, 13); memcpy(bit_store, bit_store_update, 24); } for (i = 0; i < 24; i++) { crc_result[i] = bit_store[23 - i]; } } void BTLETxProcessor::scramble(char* bit_in, int num_bit, int channel_number, char* bit_out) { char bit_store[7], bit_store_update[7]; int i; bit_store[0] = 1; bit_store[1] = 0x01 & (channel_number >> 5); bit_store[2] = 0x01 & (channel_number >> 4); bit_store[3] = 0x01 & (channel_number >> 3); bit_store[4] = 0x01 & (channel_number >> 2); bit_store[5] = 0x01 & (channel_number >> 1); bit_store[6] = 0x01 & (channel_number >> 0); for (i = 0; i < num_bit; i++) { bit_out[i] = (bit_store[6] + bit_in[i]) % 2; bit_store_update[0] = bit_store[6]; bit_store_update[1] = bit_store[0]; bit_store_update[2] = bit_store[1]; bit_store_update[3] = bit_store[2]; bit_store_update[4] = (bit_store[3] + bit_store[6]) % 2; bit_store_update[5] = bit_store[4]; bit_store_update[6] = bit_store[5]; memcpy(bit_store, bit_store_update, 7); } } void BTLETxProcessor::disp_bit_in_hex(char* bit, int num_bit) { int i, a; for (i = 0; i < num_bit; i = i + 8) { a = bit[i] + bit[i + 1] * 2 + bit[i + 2] * 4 + bit[i + 3] * 8 + bit[i + 4] * 16 + bit[i + 5] * 32 + bit[i + 6] * 64 + bit[i + 7] * 128; data_message.is_data = true; data_message.value = (uint8_t)a; shared_memory.application_queue.push(data_message); } } void BTLETxProcessor::crc24_and_scramble_to_gen_phy_bit(char* crc_init_hex, PKT_INFO* pkt) { crc24(pkt->info_bit + 5 * 8, pkt->num_info_bit - 5 * 8, crc_init_hex, pkt->info_bit + pkt->num_info_bit); // disp_bit_in_hex(pkt->info_bit, pkt->num_info_bit + 3*8); scramble(pkt->info_bit + 5 * 8, pkt->num_info_bit - 5 * 8 + 24, pkt->channel_number, pkt->phy_bit + 5 * 8); memcpy(pkt->phy_bit, pkt->info_bit, 5 * 8); pkt->num_phy_bit = pkt->num_info_bit + 24; // disp_bit_in_hex(pkt->phy_bit, pkt->num_phy_bit); } void BTLETxProcessor::fill_adv_pdu_header(PKT_INFO* pkt, int txadd, int rxadd, int payload_len, char* bit_out) { if (pkt->pkt_type == ADV_IND || pkt->pkt_type == IBEACON) { bit_out[3] = 0; bit_out[2] = 0; bit_out[1] = 0; bit_out[0] = 0; } else if (pkt->pkt_type == ADV_DIRECT_IND) { bit_out[3] = 0; bit_out[2] = 0; bit_out[1] = 0; bit_out[0] = 1; } else if (pkt->pkt_type == ADV_NONCONN_IND || pkt->pkt_type == DISCOVERY) { bit_out[3] = 0; bit_out[2] = 0; bit_out[1] = 1; bit_out[0] = 0; } else if (pkt->pkt_type == SCAN_REQ) { bit_out[3] = 0; bit_out[2] = 0; bit_out[1] = 1; bit_out[0] = 1; } else if (pkt->pkt_type == SCAN_RSP) { bit_out[3] = 0; bit_out[2] = 1; bit_out[1] = 0; bit_out[0] = 0; } else if (pkt->pkt_type == CONNECT_REQ) { bit_out[3] = 0; bit_out[2] = 1; bit_out[1] = 0; bit_out[0] = 1; } else if (pkt->pkt_type == ADV_SCAN_IND) { bit_out[3] = 0; bit_out[2] = 1; bit_out[1] = 1; bit_out[0] = 0; } else { bit_out[3] = 1; bit_out[2] = 1; bit_out[1] = 1; bit_out[0] = 1; } bit_out[4] = 0; bit_out[5] = 0; bit_out[6] = txadd; bit_out[7] = rxadd; bit_out[8] = 0x01 & (payload_len >> 0); bit_out[9] = 0x01 & (payload_len >> 1); bit_out[10] = 0x01 & (payload_len >> 2); bit_out[11] = 0x01 & (payload_len >> 3); bit_out[12] = 0x01 & (payload_len >> 4); bit_out[13] = 0x01 & (payload_len >> 5); bit_out[14] = 0; bit_out[15] = 0; } int BTLETxProcessor::calculate_sample_for_ADV(PKT_INFO* pkt) { pkt->num_info_bit = 0; // gen preamble and access address const char* AA = "AA"; const char* AAValue = "D6BE898E"; pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit((char*)AA, pkt->info_bit, 0, 1); pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit((char*)AAValue, pkt->info_bit + pkt->num_info_bit, 0, 4); // get txadd and rxadd int txadd = 0, rxadd = 0; pkt->num_info_bit = pkt->num_info_bit + 16; // 16 is header length // get AdvA and AdvData pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit(macAddress, pkt->info_bit + pkt->num_info_bit, 1, 6); pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit(advertisementData, pkt->info_bit + pkt->num_info_bit, 0, 31); int payload_len = (pkt->num_info_bit / 8) - 7; fill_adv_pdu_header(pkt, txadd, rxadd, payload_len, pkt->info_bit + 5 * 8); const char* checksumInit = "555555"; crc24_and_scramble_to_gen_phy_bit((char*)checksumInit, pkt); #ifdef new_way pkt->num_phy_sample = gen_sample_from_phy_bit(pkt->phy_bit, pkt->phy_sample, pkt->num_phy_bit); #endif // disp_bit_in_hex(pkt->phy_sample, pkt->num_phy_sample); return (0); } int BTLETxProcessor::calculate_sample_from_pkt_type(PKT_INFO* pkt) { // Todo: Handle other Enum values. // if (packetType == ADV_IND); if (calculate_sample_for_ADV(pkt) == -1) { return (-1); } return (0); } int BTLETxProcessor::calculate_pkt_info(PKT_INFO* pkt) { if (calculate_sample_from_pkt_type(pkt) == -1) { return (-1); } return (0); } void BTLETxProcessor::execute(const buffer_c8_t& buffer) { int8_t re, im; // This is called at 4M/2048 = 1953Hz for (size_t i = 0; i < buffer.count; i++) { if (configured) { // This is going to loop through each sample bit and push it to the output buffer. if (sample_count > length) { configured = false; sample_count = 0; txprogress_message.done = true; shared_memory.application_queue.push(txprogress_message); } else { // Real and imaginary was already calculated in gen_sample_from_phy_bit. // It was processed from each data bit, run through a Gaussian Filter, and then ran through sin and cos table to get each IQ bit. re = (int8_t)packets.phy_sample[sample_count++]; im = (int8_t)packets.phy_sample[sample_count++]; buffer.p[i] = {re, im}; if (progress_count >= progress_notice) { progress_count = 0; txprogress_message.progress++; txprogress_message.done = false; shared_memory.application_queue.push(txprogress_message); } else { progress_count++; } } } else { re = 0; im = 0; buffer.p[i] = {re, im}; } } } void BTLETxProcessor::on_message(const Message* const message) { if (message->id == Message::ID::BTLETxConfigure) { configure(*reinterpret_cast(message)); } } void BTLETxProcessor::configure(const BTLETxConfigureMessage& message) { channel_number = message.channel_number; packetType = (PKT_TYPE)message.pduType; memcpy(macAddress, message.macAddress, sizeof(macAddress)); memcpy(advertisementData, message.advertisementData, sizeof(advertisementData)); packets.channel_number = channel_number; packets.pkt_type = packetType; // Calculates the samples based on the BLE packet data and generates IQ values into an array to be sent out. calculate_pkt_info(&packets); #ifdef new_way // This is because each sample contains I and Q, but packet.num_phy_samples just returns the total samples. length = (uint32_t)(packets.num_phy_sample * 2); #else length = (uint32_t)packets.num_phy_bit; #endif // Starting at sample_count 0 since packets.num_phy_sample contains every sample needed to be sent out. sample_count = 0; progress_count = 0; progress_notice = 64; txprogress_message.progress = 0; txprogress_message.done = false; configured = true; } int main() { EventDispatcher event_dispatcher{std::make_unique()}; event_dispatcher.run(); return 0; }