#ifndef __FPROTO_Infactory_H__ #define __FPROTO_Infactory_H__ #include "weatherbase.hpp" typedef enum { InfactoryDecoderStepReset = 0, InfactoryDecoderStepCheckPreambule, InfactoryDecoderStepSaveDuration, InfactoryDecoderStepCheckDuration, } InfactoryDecoderStep; class FProtoWeatherInfactory : public FProtoWeatherBase { public: FProtoWeatherInfactory() { sensorType = FPW_INFACTORY; } void feed(bool level, uint32_t duration) { switch (parser_step) { case InfactoryDecoderStepReset: if ((level) && (DURATION_DIFF(duration, te_short * 2) < te_delta * 2)) { parser_step = InfactoryDecoderStepCheckPreambule; te_last = duration; header_count = 0; } break; case InfactoryDecoderStepCheckPreambule: if (level) { te_last = duration; } else { if ((DURATION_DIFF(te_last, te_short * 2) < te_delta * 2) && (DURATION_DIFF(duration, te_short * 2) < te_delta * 2)) { // Found preambule header_count++; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_short * 16) < te_delta * 8)) { // Found syncPrefix if (header_count > 3) { parser_step = InfactoryDecoderStepSaveDuration; decode_data = 0; decode_count_bit = 0; } } else { parser_step = InfactoryDecoderStepReset; } } break; case InfactoryDecoderStepSaveDuration: if (level) { te_last = duration; parser_step = InfactoryDecoderStepCheckDuration; } else { parser_step = InfactoryDecoderStepReset; } break; case InfactoryDecoderStepCheckDuration: if (!level) { if (duration >= ((uint32_t)te_short * 30)) { // Found syncPostfix if ((decode_count_bit == min_count_bit_for_found) && ws_protocol_infactory_check_crc()) { data = decode_data; data_count_bit = decode_count_bit; ws_protocol_infactory_remote_controller(); if (callback) callback(this); } decode_data = 0; decode_count_bit = 0; parser_step = InfactoryDecoderStepReset; break; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long) < te_delta * 2)) { subghz_protocol_blocks_add_bit(0); parser_step = InfactoryDecoderStepSaveDuration; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long * 2) < te_delta * 4)) { subghz_protocol_blocks_add_bit(1); parser_step = InfactoryDecoderStepSaveDuration; } else { parser_step = InfactoryDecoderStepReset; } } else { parser_step = InfactoryDecoderStepReset; } break; } } protected: uint32_t te_short = 500; uint32_t te_long = 2000; uint32_t te_delta = 150; uint32_t min_count_bit_for_found = 40; bool ws_protocol_infactory_check_crc() { uint8_t msg[] = { static_cast(decode_data >> 32), static_cast(((decode_data >> 24) & 0x0F) | (decode_data & 0x0F) << 4), static_cast(decode_data >> 16), static_cast(decode_data >> 8), static_cast(decode_data)}; uint8_t crc = FProtoGeneral::subghz_protocol_blocks_crc4(msg, 4, 0x13, 0); // Koopmann 0x9, CCITT-4; FP-4; ITU-T G.704 crc ^= msg[4] >> 4; // last nibble is only XORed return (crc == ((decode_data >> 28) & 0x0F)); } void ws_protocol_infactory_remote_controller() { id = data >> 32; battery_low = (data >> 26) & 1; temp = FProtoGeneral::locale_fahrenheit_to_celsius(((float)((data >> 12) & 0x0FFF) - 900.0f) / 10.0f); humidity = (((data >> 8) & 0x0F) * 10) + ((data >> 4) & 0x0F); // BCD, 'A0'=100%rH channel = data & 0x03; } }; #endif