#ifndef __FPROTO_GENERAL_H__ #define __FPROTO_GENERAL_H__ // useful methods for both weather and subghzd #include #include #define bit_read(value, bit) (((value) >> (bit)) & 0x01) #define bit_set(value, bit) \ ({ \ __typeof__(value) _one = (1); \ (value) |= (_one << (bit)); \ }) #define bit_clear(value, bit) \ ({ \ __typeof__(value) _one = (1); \ (value) &= ~(_one << (bit)); \ }) #define bit_write(value, bit, bitvalue) (bitvalue ? bit_set(value, bit) : bit_clear(value, bit)) #define DURATION_DIFF(x, y) (((x) < (y)) ? ((y) - (x)) : ((x) - (y))) typedef enum { ManchesterStateStart1 = 0, ManchesterStateMid1 = 1, ManchesterStateMid0 = 2, ManchesterStateStart0 = 3 } ManchesterState; typedef enum { ManchesterEventShortLow = 0, ManchesterEventShortHigh = 2, ManchesterEventLongLow = 4, ManchesterEventLongHigh = 6, ManchesterEventReset = 8 } ManchesterEvent; class FProtoGeneral { public: static bool manchester_advance( ManchesterState state, ManchesterEvent event, ManchesterState* next_state, bool* data) { bool result = false; ManchesterState new_state; if (event == ManchesterEventReset) { new_state = ManchesterStateMid1; } else { new_state = (ManchesterState)(transitions[state] >> event & 0x3); if (new_state == state) { new_state = ManchesterStateMid1; } else { if (new_state == ManchesterStateMid0) { if (data) *data = false; result = true; } else if (new_state == ManchesterStateMid1) { if (data) *data = true; result = true; } } } *next_state = new_state; return result; } static uint8_t subghz_protocol_blocks_get_parity(uint64_t key, uint8_t bit_count) { uint8_t parity = 0; for (uint8_t i = 0; i < bit_count; i++) { parity += bit_read(key, i); } return parity & 0x01; } static uint8_t subghz_protocol_blocks_add_bytes(uint8_t const message[], size_t size) { uint32_t result = 0; for (size_t i = 0; i < size; ++i) { result += message[i]; } return (uint8_t)result; } static uint8_t subghz_protocol_blocks_parity8(uint8_t byte) { byte ^= byte >> 4; byte &= 0xf; return (0x6996 >> byte) & 1; } static uint8_t subghz_protocol_blocks_parity_bytes(uint8_t const message[], size_t size) { uint8_t result = 0; for (size_t i = 0; i < size; ++i) { result ^= subghz_protocol_blocks_parity8(message[i]); } return result; } static uint8_t subghz_protocol_blocks_lfsr_digest8( uint8_t const message[], size_t size, uint8_t gen, uint8_t key) { uint8_t sum = 0; for (size_t byte = 0; byte < size; ++byte) { uint8_t data = message[byte]; for (int i = 7; i >= 0; --i) { // XOR key into sum if data bit is set if ((data >> i) & 1) sum ^= key; // roll the key right (actually the LSB is dropped here) // and apply the gen (needs to include the dropped LSB as MSB) if (key & 1) key = (key >> 1) ^ gen; else key = (key >> 1); } } return sum; } static float locale_fahrenheit_to_celsius(float temp_f) { return (temp_f - 32.f) / 1.8f; } static uint8_t subghz_protocol_blocks_crc4( uint8_t const message[], size_t size, uint8_t polynomial, uint8_t init) { uint8_t remainder = init << 4; // LSBs are unused uint8_t poly = polynomial << 4; uint8_t bit; while (size--) { remainder ^= *message++; for (bit = 0; bit < 8; bit++) { if (remainder & 0x80) { remainder = (remainder << 1) ^ poly; } else { remainder = (remainder << 1); } } } return remainder >> 4 & 0x0f; // discard the LSBs } static uint8_t subghz_protocol_blocks_lfsr_digest8_reflect( uint8_t const message[], size_t size, uint8_t gen, uint8_t key) { uint8_t sum = 0; // Process message from last byte to first byte (reflected) for (int byte = size - 1; byte >= 0; --byte) { uint8_t data = message[byte]; // Process individual bits of each byte (reflected) for (uint8_t i = 0; i < 8; ++i) { // XOR key into sum if data bit is set if ((data >> i) & 1) { sum ^= key; } // roll the key left (actually the LSB is dropped here) // and apply the gen (needs to include the dropped lsb as MSB) if (key & 0x80) key = (key << 1) ^ gen; else key = (key << 1); } } return sum; } static uint64_t subghz_protocol_blocks_reverse_key(uint64_t key, uint8_t bit_count) { uint64_t reverse_key = 0; for (uint8_t i = 0; i < bit_count; i++) { reverse_key = reverse_key << 1 | bit_read(key, i); } return reverse_key; } static uint8_t subghz_protocol_blocks_crc8( uint8_t const message[], size_t size, uint8_t polynomial, uint8_t init) { uint8_t remainder = init; for (size_t byte = 0; byte < size; ++byte) { remainder ^= message[byte]; for (uint8_t bit = 0; bit < 8; ++bit) { if (remainder & 0x80) { remainder = (remainder << 1) ^ polynomial; } else { remainder = (remainder << 1); } } } return remainder; } private: static inline const uint8_t transitions[] = {0b00000001, 0b10010001, 0b10011011, 0b11111011}; }; #endif