Adding simple FSK Rx Processor. Can be used with New Apps. (#2716)

* Work to allow for unique beacon parsing functions.

* Fixing pull.

* Changes.

* Formatting.

* Fix Copyright

* Update firmware/application/apps/ble_rx_app.cpp

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update firmware/baseband/proc_btlerx.cpp

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* PR suggestions.

* Fix String.

* FSK Rx Improvements. Works for my custom protocol.

* Fix buffer size.

* Refactor

* Formatting.

* Formatting.

* Fixing compiling, and BLE Rx UI/Performance.

* More improvements.

* Fixing stuck state.

* More stuck parsing fix.

* Combining PR changes.

* Improvements from previous PR.

* Fix dbM calculation relative to device RSSI.

* Formatting.

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: TJ <tj.baginski@cognosos.com>
This commit is contained in:
Netro 2025-06-28 19:02:12 -04:00 committed by GitHub
parent 4e276cdc71
commit f90d3fabce
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 521 additions and 448 deletions

View file

@ -27,7 +27,7 @@
#include "event_m4.hpp"
float BTLERxProcessor::get_phase_diff(const complex16_t& sample0, const complex16_t& sample1) {
inline float BTLERxProcessor::get_phase_diff(const complex16_t& sample0, const complex16_t& sample1) {
// Calculate the phase difference between two samples.
float dI = sample1.real() * sample0.real() + sample1.imag() * sample0.imag();
float dQ = sample1.imag() * sample0.real() - sample1.real() * sample0.imag();
@ -36,7 +36,7 @@ float BTLERxProcessor::get_phase_diff(const complex16_t& sample0, const complex1
return phase_diff;
}
uint32_t BTLERxProcessor::crc_init_reorder(uint32_t crc_init) {
inline uint32_t BTLERxProcessor::crc_init_reorder(uint32_t crc_init) {
int i;
uint32_t crc_init_tmp, crc_init_input, crc_init_input_tmp;
@ -62,7 +62,7 @@ uint32_t BTLERxProcessor::crc_init_reorder(uint32_t crc_init) {
return (crc_init_tmp);
}
uint_fast32_t BTLERxProcessor::crc_update(uint_fast32_t crc, const void* data, size_t data_len) {
inline uint_fast32_t BTLERxProcessor::crc_update(uint_fast32_t crc, const void* data, size_t data_len) {
const unsigned char* d = (const unsigned char*)data;
unsigned int tbl_idx;
@ -76,7 +76,7 @@ uint_fast32_t BTLERxProcessor::crc_update(uint_fast32_t crc, const void* data, s
return crc & 0xffffff;
}
uint_fast32_t BTLERxProcessor::crc24_byte(uint8_t* byte_in, int num_byte, uint32_t init_hex) {
inline uint_fast32_t BTLERxProcessor::crc24_byte(uint8_t* byte_in, int num_byte, uint32_t init_hex) {
uint_fast32_t crc = init_hex;
crc = crc_update(crc, byte_in, num_byte);
@ -84,7 +84,7 @@ uint_fast32_t BTLERxProcessor::crc24_byte(uint8_t* byte_in, int num_byte, uint32
return (crc);
}
bool BTLERxProcessor::crc_check(uint8_t* tmp_byte, int body_len, uint32_t crc_init) {
inline bool BTLERxProcessor::crc_check(uint8_t* tmp_byte, int body_len, uint32_t crc_init) {
int crc24_checksum;
crc24_checksum = crc24_byte(tmp_byte, body_len, crc_init); // 0x555555 --> 0xaaaaaa. maybe because byte order
@ -96,7 +96,7 @@ bool BTLERxProcessor::crc_check(uint8_t* tmp_byte, int body_len, uint32_t crc_in
return (crc24_checksum != checksumReceived);
}
void BTLERxProcessor::scramble_byte(uint8_t* byte_in, int num_byte, const uint8_t* scramble_table_byte, uint8_t* byte_out) {
inline void BTLERxProcessor::scramble_byte(uint8_t* byte_in, int num_byte, const uint8_t* scramble_table_byte, uint8_t* byte_out) {
int i;
for (i = 0; i < num_byte; i++) {
@ -104,7 +104,7 @@ void BTLERxProcessor::scramble_byte(uint8_t* byte_in, int num_byte, const uint8_
}
}
int BTLERxProcessor::verify_payload_byte(int num_payload_byte, ADV_PDU_TYPE pdu_type) {
inline int BTLERxProcessor::verify_payload_byte(int num_payload_byte, ADV_PDU_TYPE pdu_type) {
// Should at least have 6 bytes for the MAC Address.
// Also ensuring that there is at least 1 byte of data.
if (num_payload_byte <= 6) {
@ -131,26 +131,27 @@ int BTLERxProcessor::verify_payload_byte(int num_payload_byte, ADV_PDU_TYPE pdu_
return 0;
}
void BTLERxProcessor::resetOffsetTracking() {
inline void BTLERxProcessor::resetOffsetTracking() {
frequency_offset = 0.0f;
frequency_offset_estimate = 0.0f;
phase_buffer_index = 0;
memset(phase_buffer, 0, sizeof(phase_buffer));
}
void BTLERxProcessor::resetBitPacketIndex() {
inline void BTLERxProcessor::resetBitPacketIndex() {
memset(rb_buf, 0, sizeof(rb_buf));
packet_index = 0;
bit_index = 0;
}
void BTLERxProcessor::resetToDefaultState() {
inline void BTLERxProcessor::resetToDefaultState() {
parseState = Parse_State_Begin;
resetOffsetTracking();
resetBitPacketIndex();
crc_init_internal = crc_init_reorder(crc_initalVale);
}
void BTLERxProcessor::demodulateFSKBits(int num_demod_byte) {
inline void BTLERxProcessor::demodulateFSKBits(int num_demod_byte) {
for (; packet_index < num_demod_byte; packet_index++) {
for (; bit_index < 8; bit_index++) {
if (samples_eaten >= (int)dst_buffer.count) {
@ -168,6 +169,15 @@ void BTLERxProcessor::demodulateFSKBits(int num_demod_byte) {
// phaseSum /= (SAMPLE_PER_SYMBOL);
// phaseSum -= frequency_offset;
/*
alternate method. faster, but less precise. with this, you need to check against this: if (samples_eaten >= (int)dst_buffer.count + SAMPLE_PER_SYMBOL) (not so good...)
int I0 = dst_buffer.p[samples_eaten].real();
int Q0 = dst_buffer.p[samples_eaten].imag();
int I1 = dst_buffer.p[samples_eaten + 1 * SAMPLE_PER_SYMBOL].real();
int Q1 = dst_buffer.p[samples_eaten + 1 * SAMPLE_PER_SYMBOL].imag();
bool bitDecision = (I0 * Q1 - I1 * Q0) > 0 ? 1 : 0;
*/
bool bitDecision = (phaseSum > 0.0f);
rb_buf[packet_index] = rb_buf[packet_index] | (bitDecision << bit_index);
@ -178,9 +188,9 @@ void BTLERxProcessor::demodulateFSKBits(int num_demod_byte) {
}
}
void BTLERxProcessor::handleBeginState() {
inline void BTLERxProcessor::handleBeginState() {
uint32_t validAccessAddress = DEFAULT_ACCESS_ADDR;
uint32_t accesssAddress = 0;
static uint32_t accesssAddress = 0;
int hit_idx = (-1);
@ -191,8 +201,10 @@ void BTLERxProcessor::handleBeginState() {
phaseDiff += get_phase_diff(dst_buffer.p[i + j], dst_buffer.p[i + j + 1]);
}
phase_buffer[phase_buffer_index] = phaseDiff / (SAMPLE_PER_SYMBOL);
// disabled, due to not used anywhere
/* phase_buffer[phase_buffer_index] = phaseDiff / (SAMPLE_PER_SYMBOL);
phase_buffer_index = (phase_buffer_index + 1) % ROLLING_WINDOW;
*/
bool bitDecision = (phaseDiff > 0);
@ -200,14 +212,15 @@ void BTLERxProcessor::handleBeginState() {
int errors = __builtin_popcount(accesssAddress ^ validAccessAddress) & 0xFFFFFFFF;
if (errors <= 4) {
if (!errors) {
hit_idx = i + SAMPLE_PER_SYMBOL;
for (int k = 0; k < ROLLING_WINDOW; k++) {
// disabled, due to not used anywhere
/* for (int k = 0; k < ROLLING_WINDOW; k++) {
frequency_offset_estimate += phase_buffer[k];
}
frequency_offset = frequency_offset_estimate / ROLLING_WINDOW;
*/
break;
}
@ -215,7 +228,7 @@ void BTLERxProcessor::handleBeginState() {
if (hit_idx == -1) {
// Process more samples.
samples_eaten = dst_buffer.count + 1;
samples_eaten = (int)dst_buffer.count + 1;
return;
}
@ -224,7 +237,7 @@ void BTLERxProcessor::handleBeginState() {
parseState = Parse_State_PDU_Header;
}
void BTLERxProcessor::handlePDUHeaderState() {
inline void BTLERxProcessor::handlePDUHeaderState() {
if (samples_eaten > (int)dst_buffer.count) {
return;
}
@ -232,6 +245,7 @@ void BTLERxProcessor::handlePDUHeaderState() {
demodulateFSKBits(NUM_PDU_HEADER_BYTE);
if (packet_index < NUM_PDU_HEADER_BYTE || bit_index != 0) {
resetToDefaultState();
return;
}
@ -244,14 +258,14 @@ void BTLERxProcessor::handlePDUHeaderState() {
// Not a valid Advertise Payload.
if ((payload_len < 6) || (payload_len > 37)) {
parseState = Parse_State_Begin;
resetToDefaultState();
return;
} else {
parseState = Parse_State_PDU_Payload;
}
}
void BTLERxProcessor::handlePDUPayloadState() {
inline void BTLERxProcessor::handlePDUPayloadState() {
const int num_demod_byte = (payload_len + 3);
if (samples_eaten > (int)dst_buffer.count) {
@ -261,6 +275,7 @@ void BTLERxProcessor::handlePDUPayloadState() {
demodulateFSKBits(num_demod_byte + NUM_PDU_HEADER_BYTE);
if (packet_index < (num_demod_byte + NUM_PDU_HEADER_BYTE) || bit_index != 0) {
resetToDefaultState();
return;
}
@ -316,26 +331,24 @@ void BTLERxProcessor::handlePDUPayloadState() {
void BTLERxProcessor::execute(const buffer_c8_t& buffer) {
if (!configured) return;
// a less computationally expensive method
max_dB = -128;
real = -128;
imag = -128;
auto* ptr = buffer.p;
auto* end = &buffer.p[buffer.count];
while (ptr < end) {
float dbm = mag2_to_dbm_8bit_normalized(ptr->real(), ptr->imag(), 1.0f, 50.0f);
if (dbm > max_dB) {
max_dB = dbm;
real = ptr->real();
imag = ptr->imag();
uint32_t max_squared = 0;
int8_t imag = 0;
int8_t real = 0;
void* src_p = buffer.p;
while (src_p < &buffer.p[buffer.count]) {
const uint32_t sample = *__SIMD32(src_p)++;
const uint32_t mag_sq = __SMUAD(sample, sample);
if (mag_sq > max_squared) {
max_squared = mag_sq;
imag = ((complex8_t*)src_p)->imag();
real = ((complex8_t*)src_p)->real();
}
ptr++;
}
max_dB = mag2_to_dbm_8bit_normalized(real, imag, 1.0f, 50.0f);
// 4Mhz 2048 samples
// Decimated by 4 to achieve 2048/4 = 512 samples at 1 sample per symbol.
decim_0.execute(buffer, dst_buffer);
@ -366,11 +379,9 @@ void BTLERxProcessor::on_message(const Message* const message) {
void BTLERxProcessor::configure(const BTLERxConfigureMessage& message) {
channel_number = message.channel_number;
decim_0.configure(taps_BTLE_2M_PHY_decim_0.taps);
decim_0.configure(taps_BTLE_Dual_PHY.taps);
configured = true;
crc_init_internal = crc_init_reorder(crc_initalVale);
}
int main() {