Looking glass final cut (#1015)

* Painter validation on single,fast and slow scan, fixes, comments, organisation
* autoindent
This commit is contained in:
gullradriel 2023-05-19 22:16:44 +02:00 committed by GitHub
parent 6aff53f184
commit 693d7864e4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 215 additions and 184 deletions

View File

@ -35,6 +35,49 @@ GlassView::~GlassView() {
baseband::shutdown();
}
void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power) {
if (mode == LOOKING_GLASS_SINGLEPASS) {
// analog audio app like view
if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - 120 + bin];
} else {
if (spectrum.db[bin - 120] > max_power)
max_power = spectrum.db[bin - 120];
}
} else if (mode == LOOKING_GLASS_FASTSCAN) {
// view is made in multiple pass, use original bin picking
// Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored
if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - 2 - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - 2 - 120 + bin];
} else {
if (spectrum.db[2 + bin - 120] > max_power)
max_power = spectrum.db[2 + bin - 120];
}
} else // if( mode == LOOKING_GLASS_SLOWSCAN )
{
if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - offset - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - offset - 120 + bin];
} else {
if (spectrum.db[offset + bin - 120] > max_power)
max_power = spectrum.db[offset + bin - 120];
}
}
}
void GlassView::on_marker_change() {
if (mode == LOOKING_GLASS_SINGLEPASS) {
marker = f_min + (marker_pixel_index * looking_glass_range) / SCREEN_W;
} else // if( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN )
{
marker = f_min + (offset * each_bin_size) + (marker_pixel_index * looking_glass_range) / SCREEN_W;
}
button_marker.set_text(to_string_short_freq(marker));
PlotMarker(marker_pixel_index); // Refresh marker on screen
}
// Returns the next multiple of num that is a multiple of multiplier
int64_t GlassView::next_mult_of(int64_t num, int64_t multiplier) {
return ((num / multiplier) + 1) * multiplier;
@ -52,6 +95,13 @@ void GlassView::adjust_range(int64_t* f_min, int64_t* f_max, int64_t width) {
*f_max += delta_span;
}
void GlassView::retune() {
// Start a new sweep
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(5);
baseband::spectrum_streaming_start(); // Do the RX
}
void GlassView::on_lna_changed(int32_t v_db) {
receiver_model.set_lna(v_db);
}
@ -66,22 +116,20 @@ void GlassView::reset_live_view(bool clear_screen) {
if (clear_screen) {
// only clear screen in peak mode
if (live_frequency_view == 2) {
display.fill_rectangle({{0, 108 + 16}, {240, 320 - (108 + 16)}}, {0, 0, 0});
display.fill_rectangle({{0, 108 + 16}, {SCREEN_W, 320 - (108 + 16)}}, {0, 0, 0});
}
}
}
void GlassView::add_spectrum_pixel(uint8_t power) {
static int64_t last_max_freq = 0;
spectrum_row[pixel_index] = spectrum_rgb3_lut[power]; // row of colors
spectrum_data[pixel_index] = (live_frequency_integrate * spectrum_data[pixel_index] + power) / (live_frequency_integrate + 1); // smoothing
pixel_index++;
if (pixel_index == 240) // got an entire waterfall line
if (pixel_index == SCREEN_W) // got an entire waterfall line
{
if (live_frequency_view > 0) {
constexpr int rssi_sample_range = 256;
constexpr int rssi_sample_range = SPEC_NB_BINS;
constexpr float rssi_voltage_min = 0.4;
constexpr float rssi_voltage_max = 2.2;
constexpr float adc_voltage_max = 3.3;
@ -91,11 +139,11 @@ void GlassView::add_spectrum_pixel(uint8_t power) {
const range_t<int> y_max_range{0, 320 - (108 + 16)};
// drawing and keeping track of max freq
for (uint16_t xpos = 0; xpos < 240; xpos++) {
for (uint16_t xpos = 0; xpos < SCREEN_W; xpos++) {
// save max powerwull freq
if (spectrum_data[xpos] > max_freq_power) {
max_freq_power = spectrum_data[xpos];
max_freq_hold = f_min + ((f_max - f_min) * xpos) / 240;
max_freq_hold = f_center + ((looking_glass_range)*xpos) / SCREEN_W;
}
int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta);
@ -110,117 +158,51 @@ void GlassView::add_spectrum_pixel(uint8_t power) {
last_max_freq = max_freq_hold;
freq_stats.set("MAX HOLD: " + to_string_short_freq(max_freq_hold));
}
PlotMarker(marker);
PlotMarker(marker_pixel_index);
} else {
display.draw_pixels({{0, display.scroll(1)}, {240, 1}}, spectrum_row); // new line at top, one less var, speedier
display.draw_pixels({{0, display.scroll(1)}, {SCREEN_W, 1}}, spectrum_row); // new line at top, one less var, speedier
}
pixel_index = 0; // Start New cascade line
}
}
// Apparently, the spectrum object returns an array of 256 bins
// Apparently, the spectrum object returns an array of SPEC_NB_BINS (256) bins
// Each having the radio signal power for it's corresponding frequency slot
void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
// default fast scan offset
uint8_t offset = 2;
baseband::spectrum_streaming_stop();
if (fast_scan || (LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX)) {
// Convert bins of this spectrum slice into a representative max_power and when enough, into pixels
// Spectrum.db has 256 bins.
// All things said and done, we actually need 240 of those bins
for (uint8_t bin = 0; bin < 240; bin++) {
// if the view is done in one pass, show it like in analog_audio_app
if ((LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX)) {
// Center 16 bins are ignored (DC spike is blanked)
if (bin < 120) {
if (spectrum.db[256 - 120 + bin] > max_power) // 134
max_power = spectrum.db[256 - 120 + bin];
} else {
if (spectrum.db[bin - 120] > max_power) // 118
max_power = spectrum.db[bin - 120];
}
} else // view is made in multiple pass, use original bin picking
{
// Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored
if (bin < 120) {
if (spectrum.db[134 + bin] > max_power) // 134
max_power = spectrum.db[134 + bin];
} else {
if (spectrum.db[bin - 118] > max_power) // 118
max_power = spectrum.db[bin - 118];
}
}
if (bin == 120) {
bins_Hz_size += 12 * each_bin_size; // add DC bin Hz count into the "pixel fulfilled bag of Hz"
} else {
bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz"
}
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
{
if (min_color_power < max_power)
add_spectrum_pixel(max_power); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
max_power = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
f_center = f_center_ini - offset * each_bin_size; // Start a new sweep
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(10);
baseband::spectrum_streaming_start(); // Do the RX
return;
}
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
}
// Convert bins of this spectrum slice into a representative max_power and when enough, into pixels
// we actually need SCREEN_W (240) of those bins
for (bin = offset; bin < bin_length + offset; bin++) {
get_max_power(spectrum, bin, max_power);
if (ignore_dc && bin == 119) {
uint8_t next_max_power = 0;
get_max_power(spectrum, 120, next_max_power);
bins_Hz_size += 12 * each_bin_size; // add the ignored DC spike to "pixel fulfilled bag of Hz"
max_power = (max_power + next_max_power) / 2;
}
f_center += (256 - (2 * offset)) * each_bin_size; // Move into the next bandwidth slice NOTE: spectrum.sampling_rate = LOOKING_GLASS_SLICE_WIDTH
// lost bins are taken in account so next slice first ignored bins overlap previous kept ones
} else // slow scan
{
offset = 32;
uint8_t bin_length = 80;
for (uint8_t bin = offset; bin < bin_length + offset; bin++) {
if (bin < 120) {
if (spectrum.db[134 + bin] > max_power) // 134
max_power = spectrum.db[134 + bin];
} else {
if (spectrum.db[bin - 118] > max_power) // 118
max_power = spectrum.db[bin - 118];
}
bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz"
bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz"
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
{
if (min_color_power < max_power)
add_spectrum_pixel(max_power); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
max_power = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
if (min_color_power < max_power)
add_spectrum_pixel(max_power); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
max_power = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
f_center = f_center_ini - offset * each_bin_size; // Start a new sweep
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(10);
baseband::spectrum_streaming_start(); // Do the RX
return;
}
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
f_center = f_center_ini;
retune();
return; // signal a new line
}
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
}
f_center += bin_length * each_bin_size;
}
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(5);
baseband::spectrum_streaming_start(); // Do the RX
f_center += looking_glass_step;
retune();
}
void GlassView::on_hide() {
@ -237,61 +219,86 @@ void GlassView::on_range_changed() {
reset_live_view(false);
f_min = field_frequency_min.value();
f_max = field_frequency_max.value();
search_span = f_max - f_min;
f_min = f_min * MHZ_DIV; // Transpose into full frequency realm
f_max = f_max * MHZ_DIV;
looking_glass_range = f_max - f_min;
if (looking_glass_range < LOOKING_GLASS_SLICE_WIDTH_MAX) {
mode = LOOKING_GLASS_SINGLEPASS;
} else {
mode = scan_type.selected_index_value();
}
if (mode == LOOKING_GLASS_SINGLEPASS) {
// if the view is done in one pass, show it like in analog_audio_app
offset = 0;
bin_length = SCREEN_W;
ignore_dc = 0;
} else if (mode == LOOKING_GLASS_FASTSCAN) {
// view is made in multiple pass, use original bin picking
offset = 0;
bin_length = SCREEN_W;
ignore_dc = 1;
} else // if( mode == LOOKING_GLASS_SLOWSCAN )
{
offset = 16;
bin_length = 80;
ignore_dc = 0;
}
each_bin_size = looking_glass_bandwidth / SPEC_NB_BINS;
if (mode != LOOKING_GLASS_SINGLEPASS) {
looking_glass_step = (bin_length + (ignore_dc * 12)) * each_bin_size;
} else {
looking_glass_step = SPEC_NB_BINS * each_bin_size;
}
adjust_range(&f_min, &f_max, SCREEN_W);
looking_glass_range = f_max - f_min;
marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz
search_span = looking_glass_range / MHZ_DIV;
button_range.set_text(" "); // clear up to 6 chars
if (locked_range) {
button_range.set_text(">" + to_string_dec_uint(search_span) + "<");
} else {
button_range.set_text(" " + to_string_dec_uint(search_span) + " ");
}
f_min = (f_min)*MHZ_DIV; // Transpose into full frequency realm
f_max = (f_max)*MHZ_DIV;
adjust_range(&f_min, &f_max, 240);
marker_pixel_step = (f_max - f_min) / 240; // Each pixel value in Hz
marker = f_min + (f_max - f_min) / 2;
button_marker.set_text(to_string_short_freq(marker));
PlotMarker(marker); // Refresh marker on screen
pixel_index = 0; // reset pixel counter
max_power = 0;
pixel_index = 0; // reset pixel counter
max_power = 0; // reset save max power level
bins_Hz_size = 0; // reset amount of Hz filled up by pixels
if ((f_max - f_min) <= LOOKING_GLASS_SLICE_WIDTH_MAX) {
LOOKING_GLASS_SLICE_WIDTH = (f_max - f_min);
receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH);
receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH / 2);
} else if (LOOKING_GLASS_SLICE_WIDTH != LOOKING_GLASS_SLICE_WIDTH_MAX) {
LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX;
receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH);
receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH);
if (mode == LOOKING_GLASS_SINGLEPASS) {
looking_glass_bandwidth = looking_glass_range;
looking_glass_sampling_rate = looking_glass_bandwidth / 2;
each_bin_size = looking_glass_bandwidth / SCREEN_W;
} else // if ( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN )
{
looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX;
looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX;
each_bin_size = looking_glass_bandwidth / SPEC_NB_BINS;
}
if (next_mult_of(LOOKING_GLASS_SLICE_WIDTH, 256) > LOOKING_GLASS_SLICE_WIDTH_MAX)
LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX;
else
LOOKING_GLASS_SLICE_WIDTH = next_mult_of(LOOKING_GLASS_SLICE_WIDTH, 256);
on_marker_change();
// set the sample rate and bandwidth
receiver_model.set_sampling_rate(looking_glass_sampling_rate);
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth);
receiver_model.set_squelch_level(0);
each_bin_size = LOOKING_GLASS_SLICE_WIDTH / 256;
f_center_ini = f_min + (LOOKING_GLASS_SLICE_WIDTH / 2); // Initial center frequency for sweep
f_center = f_center_ini; // Reset sweep into first slice
baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value());
receiver_model.set_tuning_frequency(f_center_ini); // tune rx for this slice
f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
f_center = f_center_ini; // Reset sweep into first slice
baseband::set_spectrum(looking_glass_sampling_rate, field_trigger.value());
receiver_model.set_tuning_frequency(f_center); // tune rx for this slice
}
void GlassView::PlotMarker(rf::Frequency pos) {
pos -= f_min;
pos = pos / marker_pixel_step; // Real pixel
void GlassView::PlotMarker(uint8_t pos) {
uint8_t shift_y = 0;
if (live_frequency_view > 0) // plot one line down when in live view
{
shift_y = 16;
}
portapack::display.fill_rectangle({0, 100 + shift_y, 240, 8}, Color::black()); // Clear old marker and whole marker rectangle btw
portapack::display.fill_rectangle({(int)pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top
portapack::display.fill_rectangle({(int)pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle
portapack::display.fill_rectangle({(int)pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom
portapack::display.fill_rectangle({0, 100 + shift_y, SCREEN_W, 8}, Color::black()); // Clear old marker and whole marker rectangle btw
portapack::display.fill_rectangle({pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top
portapack::display.fill_rectangle({pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle
portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom
}
GlassView::GlassView(
@ -335,15 +342,15 @@ GlassView::GlassView(
field_frequency_max.set_value(v + min_size);
if (locked_range)
field_frequency_max.set_value(v + min_size);
this->on_range_changed();
on_range_changed();
};
field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset
field_frequency_min.set_step(steps);
field_frequency_min.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value() * 1000000);
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) {
int32_t freq = f / 1000000;
int32_t freq = f / MHZ_DIV;
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
@ -354,7 +361,7 @@ GlassView::GlassView(
field_frequency_min.set_value(freq);
if (field_frequency_max.value() < (freq + min_size))
field_frequency_max.set_value(freq + min_size);
this->on_range_changed();
on_range_changed();
};
};
@ -373,26 +380,26 @@ GlassView::GlassView(
field_frequency_min.set_value(v - min_size);
if (locked_range)
field_frequency_min.set_value(v - min_size);
this->on_range_changed();
on_range_changed();
};
field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset
field_frequency_max.set_step(steps);
field_frequency_max.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value() * 1000000);
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
int32_t freq = f / 1000000;
int32_t freq = f / MHZ_DIV;
if (freq < min_size)
freq = min_size;
field_frequency_max.set_value(freq);
if (field_frequency_min.value() > (freq - min_size))
field_frequency_min.set_value(freq - min_size);
this->on_range_changed();
on_range_changed();
};
};
@ -418,7 +425,8 @@ GlassView::GlassView(
scan_type.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
fast_scan = v;
mode = v;
on_range_changed();
};
scan_type.set_selected_index(0); // default legacy fast scan
@ -434,7 +442,7 @@ GlassView::GlassView(
button_rst.hidden(true);
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates
} else if (v == 1) {
display.fill_rectangle({{0, 108}, {240, 24}}, {0, 0, 0});
display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0});
live_frequency_view = 1;
display.scroll_disable();
level_integration.hidden(false);
@ -442,7 +450,7 @@ GlassView::GlassView(
button_jump.hidden(false);
button_rst.hidden(false);
} else if (v == 2) {
display.fill_rectangle({{0, 108}, {240, 24}}, {0, 0, 0});
display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0});
live_frequency_view = 2;
display.scroll_disable();
level_integration.hidden(false);
@ -472,18 +480,19 @@ GlassView::GlassView(
(void)n;
field_frequency_min.set_value(presets_db[v].min, false);
field_frequency_max.set_value(presets_db[v].max, false);
this->on_range_changed();
on_range_changed();
};
button_marker.on_change = [this]() {
marker = marker + button_marker.get_encoder_delta() * marker_pixel_step;
if (marker < f_min)
marker = f_min;
if (marker > f_max)
marker = f_max;
button_marker.set_text(to_string_short_freq(marker));
if (((int)marker_pixel_index + button_marker.get_encoder_delta()) < 0) {
marker_pixel_index = 0;
} else if (((int)marker_pixel_index + button_marker.get_encoder_delta()) > SCREEN_W) {
marker_pixel_index = SCREEN_W;
} else {
marker_pixel_index = marker_pixel_index + button_marker.get_encoder_delta();
}
on_marker_change();
button_marker.set_encoder_delta(0);
PlotMarker(marker); // Refresh marker on screen
};
button_marker.on_select = [this](ButtonWithEncoder&) {
@ -494,7 +503,7 @@ GlassView::GlassView(
};
field_trigger.on_change = [this](int32_t v) {
baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, v);
baseband::set_spectrum(looking_glass_sampling_rate, v);
};
field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution
@ -522,16 +531,17 @@ GlassView::GlassView(
};
display.scroll_set_area(109, 319);
baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value()); // trigger:
// Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute ,
// it keeps adding the output of the fft to the buffer until "trigger" number of calls are made,
// at which time it pushes the buffer up with channel_spectrum.feed
baseband::set_spectrum(looking_glass_sampling_rate, field_trigger.value()); // trigger:
// Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute ,
// it keeps adding the output of the fft to the buffer until "trigger" number of calls are made,
// at which time it pushes the buffer up with channel_spectrum.feed
marker_pixel_index = 120;
on_range_changed();
receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis);
receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); // 20mhz
receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz
receiver_model.set_sampling_rate(looking_glass_sampling_rate); // 20mhz
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz
receiver_model.set_squelch_level(0);
receiver_model.enable();
}

View File

@ -38,7 +38,18 @@
namespace ui {
#define LOOKING_GLASS_SLICE_WIDTH_MAX 20000000
#define MHZ_DIV 1000000
#define X2_MHZ_DIV 2000000
// blanked DC (16 centered bins ignored ) and top left and right (2 bins ignored on each side )
#define LOOKING_GLASS_FASTSCAN 0
// only first half used (so DC spike is not ignored, it's stopped before the DC spike) minus the 2 first bins
#define LOOKING_GLASS_SLOWSCAN 1
// analog audio view like
#define LOOKING_GLASS_SINGLEPASS 2
// one spectrum line number of bins
#define SPEC_NB_BINS 256
// screen dimensions
#define SCREEN_W 240
#define SCREEN_H 320
class GlassView : public View {
public:
@ -78,16 +89,12 @@ class GlassView : public View {
};
std::vector<preset_entry> presets_db{};
// Each slice bandwidth 20 MHz and a multiple of 256
// since we are using LOOKING_GLASS_SLICE_WIDTH/256 as the each_bin_size
// it should also be a multiple of 2 since we are using LOOKING_GLASS_SLICE_WIDTH / 2 as centering freq
int64_t LOOKING_GLASS_SLICE_WIDTH = 20000000;
// frequency rounding helpers
void get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power);
void on_marker_change();
int64_t next_mult_of(int64_t num, int64_t multiplier);
void adjust_range(int64_t* f_min, int64_t* f_max, int64_t width);
void retune();
bool move_to_next_position();
void on_channel_spectrum(const ChannelSpectrum& spectrum);
void do_timers();
void on_range_changed();
@ -95,7 +102,7 @@ class GlassView : public View {
void on_vga_changed(int32_t v_db);
void reset_live_view(bool clear_screen);
void add_spectrum_pixel(uint8_t power);
void PlotMarker(rf::Frequency pos);
void PlotMarker(uint8_t pos);
void load_Presets();
void txtline_process(std::string& line);
void populate_Presets();
@ -106,13 +113,20 @@ class GlassView : public View {
rf::Frequency f_center{0};
rf::Frequency f_center_ini{0};
rf::Frequency marker{0};
uint8_t marker_pixel_index{0};
rf::Frequency marker_pixel_step{0};
rf::Frequency each_bin_size{LOOKING_GLASS_SLICE_WIDTH / 256};
// size of one spectrum bin in Hz
rf::Frequency each_bin_size{0};
// consumed number of Hz, used to know if we have filled a 'bag' , a corresponding pixel length on screen
rf::Frequency bins_Hz_size{0};
rf::Frequency looking_glass_sampling_rate{0};
rf::Frequency looking_glass_bandwidth{0};
rf::Frequency looking_glass_range{0};
rf::Frequency looking_glass_step{0};
uint8_t min_color_power{0};
uint32_t pixel_index{0};
std::array<Color, 240> spectrum_row = {0};
std::array<uint8_t, 240> spectrum_data = {0};
std::array<Color, SCREEN_W> spectrum_row = {0};
std::array<uint8_t, SCREEN_W> spectrum_data = {0};
ChannelSpectrumFIFO* fifo{nullptr};
uint8_t max_power = 0;
int32_t steps = 0;
@ -120,8 +134,15 @@ class GlassView : public View {
int16_t live_frequency_integrate = 3;
int64_t max_freq_hold = 0;
int16_t max_freq_power = -1000;
bool fast_scan = true; // default to legacy fast scan
bool locked_range = false;
uint8_t bin_length = SCREEN_W;
uint8_t real_bin_length = SCREEN_W;
uint8_t offset = 0;
uint8_t tune_offset = 0;
uint8_t bin = 0;
int64_t last_max_freq = 0;
uint8_t mode = LOOKING_GLASS_FASTSCAN;
uint8_t ignore_dc = 0;
Labels labels{
{{0, 0}, "MIN: MAX: LNA VGA ", Color::light_grey()},
@ -200,8 +221,8 @@ class GlassView : public View {
{17 * 8, 4 * 16},
2,
{
{"F-", true},
{"S-", false},
{"F-", LOOKING_GLASS_FASTSCAN},
{"S-", LOOKING_GLASS_SLOWSCAN},
}};
OptionsField view_config{
@ -230,15 +251,15 @@ class GlassView : public View {
}};
Button button_jump{
{240 - 4 * 8, 5 * 16, 4 * 8, 16},
{SCREEN_W - 4 * 8, 5 * 16, 4 * 8, 16},
"JMP"};
Button button_rst{
{240 - 9 * 8, 5 * 16, 4 * 8, 16},
{SCREEN_W - 9 * 8, 5 * 16, 4 * 8, 16},
"RST"};
Text freq_stats{
{0 * 8, 5 * 16, 240 - 10 * 8, 8},
{0 * 8, 5 * 16, SCREEN_W - 10 * 8, 8},
""};
MessageHandlerRegistration message_handler_spectrum_config{