simplifications, better precision, less sleeps (#1091)

* simplifications, better precision, less sleeps
* fixing glitches
* fixed res freeze
* correct frequency picking for marker, yay !
* added comments into the code in hard parts
* took out unneeded sleep
Special thanks to users vmakeev, tel, f1ghy, u-foka for their resilience in testing the bunch of bins I've produced to fix the thing :-)
This commit is contained in:
gullradriel 2023-06-01 13:03:32 +02:00 committed by GitHub
parent e50d8dc148
commit 69011754c9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 104 additions and 122 deletions

View File

@ -46,18 +46,10 @@ void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint
if (spectrum.db[bin - 120] > max_power) if (spectrum.db[bin - 120] > max_power)
max_power = spectrum.db[bin - 120]; max_power = spectrum.db[bin - 120];
} }
} else if (mode == LOOKING_GLASS_FASTSCAN) {
// view is made in multiple pass, use original bin picking
// Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored
if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - 2 - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - 2 - 120 + bin];
} else { } else {
if (spectrum.db[2 + bin - 120] > max_power) // view is made in multiple pass, use original bin picking
max_power = spectrum.db[2 + bin - 120]; // FAST mode: center 12 bins are ignored in fast mode , (DC spike is blanked) leftmost and rightmost 2 bins are ignored
} // SLOW mode: leftmost 'offset' bins are ignored
} else // if( mode == LOOKING_GLASS_SLOWSCAN )
{
if (bin < 120) { if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - offset - 120 + bin] > max_power) if (spectrum.db[SPEC_NB_BINS - offset - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - offset - 120 + bin]; max_power = spectrum.db[SPEC_NB_BINS - offset - 120 + bin];
@ -68,13 +60,19 @@ void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint
} }
} }
void GlassView::on_marker_change() { rf::Frequency GlassView::get_freq_from_bin_pos(uint8_t pos) {
rf::Frequency freq_at_pos = 0;
if (mode == LOOKING_GLASS_SINGLEPASS) { if (mode == LOOKING_GLASS_SINGLEPASS) {
marker = f_min + (8 * each_bin_size) + (marker_pixel_index * (looking_glass_range - 16 * each_bin_size)) / SCREEN_W; // starting from the middle, minus 8 ignored bin on each side. Since pos is [-120,120] after the (pos - 120), it's divided by SCREEN_W(240)/2 => 120
} else // if( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN ) freq_at_pos = f_center_ini + ((pos - 120) * ((looking_glass_range - ((16 * looking_glass_range) / SPEC_NB_BINS)) / 2)) / (SCREEN_W / 2);
{ } else
marker = f_min + (offset * each_bin_size) + (marker_pixel_index * looking_glass_range) / SCREEN_W; freq_at_pos = f_min - (offset * each_bin_size) + (pos * looking_glass_range) / SCREEN_W;
return freq_at_pos;
} }
void GlassView::on_marker_change() {
marker = get_freq_from_bin_pos(marker_pixel_index);
button_marker.set_text(to_string_short_freq(marker)); button_marker.set_text(to_string_short_freq(marker));
PlotMarker(marker_pixel_index); // Refresh marker on screen PlotMarker(marker_pixel_index); // Refresh marker on screen
} }
@ -101,7 +99,7 @@ void GlassView::retune() {
// Tune rx for this new slice directly because the model // Tune rx for this new slice directly because the model
// saves to persistent memory which is slower. // saves to persistent memory which is slower.
radio::set_tuning_frequency(f_center); radio::set_tuning_frequency(f_center);
chThdSleepMilliseconds(5); chThdSleepMilliseconds(5); // stabilize freq
baseband::spectrum_streaming_start(); // Do the RX baseband::spectrum_streaming_start(); // Do the RX
} }
@ -146,12 +144,7 @@ void GlassView::add_spectrum_pixel(uint8_t power) {
// save max powerwull freq // save max powerwull freq
if (spectrum_data[xpos] > max_freq_power) { if (spectrum_data[xpos] > max_freq_power) {
max_freq_power = spectrum_data[xpos]; max_freq_power = spectrum_data[xpos];
if (mode == LOOKING_GLASS_SINGLEPASS) { max_freq_hold = get_freq_from_bin_pos(xpos);
max_freq_hold = f_min + (xpos * looking_glass_range) / SCREEN_W;
} else // if( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN )
{
max_freq_hold = f_min + (offset * each_bin_size) + (xpos * looking_glass_range) / SCREEN_W;
}
} }
int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta); int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta);
uint8_t color_gradient = (point * 255) / 212; uint8_t color_gradient = (point * 255) / 212;
@ -179,16 +172,12 @@ void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
baseband::spectrum_streaming_stop(); baseband::spectrum_streaming_stop();
// Convert bins of this spectrum slice into a representative max_power and when enough, into pixels // Convert bins of this spectrum slice into a representative max_power and when enough, into pixels
// we actually need SCREEN_W (240) of those bins // we actually need SCREEN_W (240) of those bins
for (bin = offset; bin < bin_length + offset; bin++) { for (bin = 0; bin < bin_length; bin++) {
get_max_power(spectrum, bin, max_power); get_max_power(spectrum, bin, max_power);
if (ignore_dc && bin == 119) { if (ignore_dc && bin == 119) {
uint8_t next_max_power = 0;
get_max_power(spectrum, 120, next_max_power);
bins_Hz_size += 12 * each_bin_size; // add the ignored DC spike to "pixel fulfilled bag of Hz" bins_Hz_size += 12 * each_bin_size; // add the ignored DC spike to "pixel fulfilled bag of Hz"
max_power = (max_power + next_max_power) / 2;
} }
bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz" bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz"
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
{ {
if (min_color_power < max_power) if (min_color_power < max_power)
@ -201,15 +190,21 @@ void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
if (!pixel_index) // Received indication that a waterfall line has been completed if (!pixel_index) // Received indication that a waterfall line has been completed
{ {
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
if (mode != LOOKING_GLASS_SINGLEPASS) {
f_center = f_center_ini; f_center = f_center_ini;
retune(); retune();
} else
baseband::spectrum_streaming_start();
return; // signal a new line return; // signal a new line
} }
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
} }
} }
if (mode != LOOKING_GLASS_SINGLEPASS) {
f_center += looking_glass_step; f_center += looking_glass_step;
retune(); retune();
} else
baseband::spectrum_streaming_start();
} }
void GlassView::on_hide() { void GlassView::on_hide() {
@ -223,46 +218,44 @@ void GlassView::on_show() {
} }
void GlassView::on_range_changed() { void GlassView::on_range_changed() {
reset_live_view(false); reset_live_view(true);
f_min = field_frequency_min.value(); f_min = field_frequency_min.value();
f_max = field_frequency_max.value(); f_max = field_frequency_max.value();
f_min = f_min * MHZ_DIV; // Transpose into full frequency realm f_min = f_min * MHZ_DIV; // Transpose into full frequency realm
f_max = f_max * MHZ_DIV; f_max = f_max * MHZ_DIV;
looking_glass_range = f_max - f_min; looking_glass_range = f_max - f_min;
if (looking_glass_range < LOOKING_GLASS_SLICE_WIDTH_MAX) { if (looking_glass_range <= LOOKING_GLASS_SLICE_WIDTH_MAX) {
mode = LOOKING_GLASS_SINGLEPASS; adjust_range(&f_min, &f_max, SCREEN_W);
} else { looking_glass_range = f_max - f_min;
mode = scan_type.selected_index_value();
}
if (mode == LOOKING_GLASS_SINGLEPASS) {
// if the view is done in one pass, show it like in analog_audio_app // if the view is done in one pass, show it like in analog_audio_app
mode = LOOKING_GLASS_SINGLEPASS;
offset = 0; offset = 0;
bin_length = SCREEN_W; bin_length = SCREEN_W;
ignore_dc = 0; ignore_dc = 0;
} else if (mode == LOOKING_GLASS_FASTSCAN) { looking_glass_bandwidth = looking_glass_range;
looking_glass_sampling_rate = looking_glass_bandwidth;
each_bin_size = looking_glass_bandwidth / SCREEN_W;
looking_glass_step = looking_glass_bandwidth;
f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
} else { // if ( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN )
// view is made in multiple pass, use original bin picking // view is made in multiple pass, use original bin picking
offset = 0; mode = scan_type.selected_index_value();
if (mode == LOOKING_GLASS_FASTSCAN) {
offset = 2;
bin_length = SCREEN_W; bin_length = SCREEN_W;
ignore_dc = 1; ignore_dc = 1;
} else // if( mode == LOOKING_GLASS_SLOWSCAN ) } else { // if( mode == LOOKING_GLASS_SLOWSCAN )
{
offset = 16; offset = 16;
bin_length = 80; bin_length = 80;
ignore_dc = 0; ignore_dc = 0;
} }
adjust_range(&f_min, &f_max, SCREEN_W); adjust_range(&f_min, &f_max, SCREEN_W);
looking_glass_range = f_max - f_min; looking_glass_range = f_max - f_min;
if (mode == LOOKING_GLASS_SINGLEPASS) {
looking_glass_bandwidth = looking_glass_range;
looking_glass_sampling_rate = looking_glass_bandwidth / 2;
each_bin_size = looking_glass_bandwidth / bin_length;
looking_glass_step = bin_length * each_bin_size;
} else { // if ( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN )
looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX; looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX;
looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX; looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX;
each_bin_size = LOOKING_GLASS_SLICE_WIDTH_MAX / SPEC_NB_BINS; each_bin_size = LOOKING_GLASS_SLICE_WIDTH_MAX / SPEC_NB_BINS;
looking_glass_step = (bin_length + (ignore_dc * 12)) * each_bin_size; looking_glass_step = (bin_length + (ignore_dc * 12)) * each_bin_size;
f_center_ini = f_min - (offset * each_bin_size) + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
} }
search_span = looking_glass_range / MHZ_DIV; search_span = looking_glass_range / MHZ_DIV;
marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz
@ -277,6 +270,7 @@ void GlassView::on_range_changed() {
pixel_index = 0; // reset pixel counter pixel_index = 0; // reset pixel counter
max_power = 0; // reset save max power level max_power = 0; // reset save max power level
bins_Hz_size = 0; // reset amount of Hz filled up by pixels bins_Hz_size = 0; // reset amount of Hz filled up by pixels
//
on_marker_change(); on_marker_change();
// set the sample rate and bandwidth // set the sample rate and bandwidth
@ -284,9 +278,8 @@ void GlassView::on_range_changed() {
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); receiver_model.set_baseband_bandwidth(looking_glass_bandwidth);
receiver_model.set_squelch_level(0); receiver_model.set_squelch_level(0);
f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
f_center = f_center_ini; // Reset sweep into first slice f_center = f_center_ini; // Reset sweep into first slice
baseband::set_spectrum(looking_glass_sampling_rate, field_trigger.value()); baseband::set_spectrum(looking_glass_bandwidth, field_trigger.value());
receiver_model.set_tuning_frequency(f_center); // tune rx for this slice receiver_model.set_tuning_frequency(f_center); // tune rx for this slice
} }
@ -302,6 +295,42 @@ void GlassView::PlotMarker(uint8_t pos) {
portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom
} }
void GlassView::clip_min(int32_t v) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v > 7200 - min_size) {
v = 7200 - min_size;
}
if (v > (field_frequency_max.value() - min_size))
field_frequency_max.set_value(v + min_size);
if (locked_range)
field_frequency_max.set_value(v + min_size);
else
field_frequency_min.set_value(v);
on_range_changed();
}
void GlassView::clip_max(int32_t v) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v < min_size) {
v = min_size;
}
if (v < (field_frequency_min.value() + min_size))
field_frequency_min.set_value(v - min_size);
if (locked_range)
field_frequency_min.set_value(v - min_size);
else
field_frequency_max.set_value(v);
on_range_changed();
}
GlassView::GlassView( GlassView::GlassView(
NavigationView& nav) NavigationView& nav)
: nav_(nav) { : nav_(nav) {
@ -329,21 +358,7 @@ GlassView::GlassView(
load_Presets(); // Load available presets from TXT files (or default) load_Presets(); // Load available presets from TXT files (or default)
field_frequency_min.on_change = [this](int32_t v) { field_frequency_min.on_change = [this](int32_t v) {
reset_live_view(true); clip_min(v);
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v > 7200 - min_size) {
v = 7200 - min_size;
field_frequency_min.set_value(v);
}
if (v > (field_frequency_max.value() - min_size))
field_frequency_max.set_value(v + min_size);
if (locked_range)
field_frequency_max.set_value(v + min_size);
on_range_changed();
}; };
field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset
field_frequency_min.set_step(steps); field_frequency_min.set_step(steps);
@ -351,37 +366,12 @@ GlassView::GlassView(
field_frequency_min.on_select = [this, &nav](NumberField& field) { field_frequency_min.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value() * MHZ_DIV); auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) { new_view->on_changed = [this, &field](rf::Frequency f) {
int32_t freq = f / MHZ_DIV; clip_min(f / MHZ_DIV);
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (freq > (7200 - min_size))
freq = 7200 - min_size;
field_frequency_min.set_value(freq);
if (field_frequency_max.value() < (freq + min_size))
field_frequency_max.set_value(freq + min_size);
on_range_changed();
}; };
}; };
field_frequency_max.on_change = [this](int32_t v) { field_frequency_max.on_change = [this](int32_t v) {
reset_live_view(true); clip_max(v);
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v < min_size) {
v = min_size;
field_frequency_max.set_value(v);
}
if (v < (field_frequency_min.value() + min_size))
field_frequency_min.set_value(v - min_size);
if (locked_range)
field_frequency_min.set_value(v - min_size);
on_range_changed();
}; };
field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset
field_frequency_max.set_step(steps); field_frequency_max.set_step(steps);
@ -389,18 +379,7 @@ GlassView::GlassView(
field_frequency_max.on_select = [this, &nav](NumberField& field) { field_frequency_max.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value() * MHZ_DIV); auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) { new_view->on_changed = [this, &field](rf::Frequency f) {
int32_t min_size = steps; clip_max(f / MHZ_DIV);
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
int32_t freq = f / MHZ_DIV;
if (freq < min_size)
freq = min_size;
field_frequency_max.set_value(freq);
if (field_frequency_min.value() > (freq - min_size))
field_frequency_min.set_value(freq - min_size);
on_range_changed();
}; };
}; };
@ -504,7 +483,7 @@ GlassView::GlassView(
}; };
field_trigger.on_change = [this](int32_t v) { field_trigger.on_change = [this](int32_t v) {
baseband::set_spectrum(looking_glass_sampling_rate, v); baseband::set_spectrum(looking_glass_bandwidth, v);
}; };
field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution
@ -532,7 +511,7 @@ GlassView::GlassView(
}; };
display.scroll_set_area(109, 319); display.scroll_set_area(109, 319);
baseband::set_spectrum(looking_glass_sampling_rate, field_trigger.value()); // trigger: baseband::set_spectrum(looking_glass_bandwidth, field_trigger.value()); // trigger:
// Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute , // Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute ,
// it keeps adding the output of the fft to the buffer until "trigger" number of calls are made, // it keeps adding the output of the fft to the buffer until "trigger" number of calls are made,
// at which time it pushes the buffer up with channel_spectrum.feed // at which time it pushes the buffer up with channel_spectrum.feed

View File

@ -89,7 +89,10 @@ class GlassView : public View {
}; };
std::vector<preset_entry> presets_db{}; std::vector<preset_entry> presets_db{};
void clip_min(int32_t v);
void clip_max(int32_t v);
void get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power); void get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power);
rf::Frequency get_freq_from_bin_pos(uint8_t pos);
void on_marker_change(); void on_marker_change();
int64_t next_mult_of(int64_t num, int64_t multiplier); int64_t next_mult_of(int64_t num, int64_t multiplier);
void adjust_range(int64_t* f_min, int64_t* f_max, int64_t width); void adjust_range(int64_t* f_min, int64_t* f_max, int64_t width);