Remove garbage DSP filter code.

This commit is contained in:
Jared Boone 2015-12-28 15:49:47 -08:00
parent ccc3402869
commit 49215c3ae6
2 changed files with 0 additions and 175 deletions

View File

@ -385,76 +385,6 @@ buffer_s16_t DecimateBy2CIC4Real::execute(
return { dst.p, src.count / 2, src.sampling_rate / 2 }; return { dst.p, src.count / 2, src.sampling_rate / 2 };
} }
#if 0
buffer_c16_t DecimateBy2HBF5Complex::execute(
buffer_c16_t const src,
buffer_c16_t const dst
) {
auto src_p = src.p;
auto dst_p = dst.p;
int32_t n = src.count;
for(; n>0; n-=2) {
/* TODO: Probably a lot of room to optimize... */
z[0] = z[2];
//z[1] = z[3];
z[2] = z[4];
//z[3] = z[5];
z[4] = z[6];
z[5] = z[7];
z[6] = z[8];
z[7] = z[9];
z[8] = z[10];
z[9] = *(src_p++);
z[10] = *(src_p++);
int32_t t_real { z[5].real * 256 };
int32_t t_imag { z[5].imag * 256 };
t_real += (z[ 0].real + z[10].real) * 3;
t_imag += (z[ 0].imag + z[10].imag) * 3;
t_real -= (z[ 2].real + z[ 8].real) * 25;
t_imag -= (z[ 2].imag + z[ 8].imag) * 25;
t_real += (z[ 4].real + z[ 6].real) * 150;
t_imag += (z[ 4].imag + z[ 6].imag) * 150;
*(dst_p++) = { t_real / 256, t_imag / 256 };
}
return { dst.p, src.count / 2, src.sampling_rate / 2 };
}
buffer_c16_t DecimateBy2HBF7Complex::execute(
buffer_c16_t const src,
buffer_c16_t const dst
) {
auto src_p = src.p;
auto dst_p = dst.p;
int32_t n = src.count;
for(; n>0; n-=2) {
/* TODO: Probably a lot of room to optimize... */
z[0] = z[2];
//z[1] = z[3];
z[2] = z[4];
//z[3] = z[5];
z[4] = z[6];
z[5] = z[7];
z[6] = z[8];
z[7] = z[9];
z[8] = z[10];
z[9] = *(src_p++);
z[10] = *(src_p++);
int32_t t_real { z[5].real * 512 };
int32_t t_imag { z[5].imag * 512 };
t_real += (z[ 0].real + z[10].real) * 7;
t_imag += (z[ 0].imag + z[10].imag) * 7;
t_real -= (z[ 2].real + z[ 8].real) * 53;
t_imag -= (z[ 2].imag + z[ 8].imag) * 53;
t_real += (z[ 4].real + z[ 6].real) * 302;
t_imag += (z[ 4].imag + z[ 6].imag) * 302;
*(dst_p++) = { t_real / 512, t_imag / 512 };
}
return { dst.p, src.count / 2, src.sampling_rate / 2 };
}
#endif
} /* namespace decimate */ } /* namespace decimate */
} /* namespace dsp */ } /* namespace dsp */

View File

@ -142,112 +142,7 @@ public:
private: private:
int16_t z[5]; int16_t z[5];
}; };
#if 0
class DecimateBy2HBF5Complex {
public:
buffer_c16_t execute(
buffer_c16_t const src,
buffer_c16_t const dst
);
private:
complex16_t z[11];
};
class DecimateBy2HBF7Complex {
public:
buffer_c16_t execute(
buffer_c16_t const src,
buffer_c16_t const dst
);
private:
complex16_t z[11];
};
#endif
/* From http://www.dspguru.com/book/export/html/3
Here are several basic techniques to fake circular buffers:
Split the calculation: You can split any FIR calculation into its "pre-wrap"
and "post-wrap" parts. By splitting the calculation into these two parts, you
essentially can do the circular logic only once, rather than once per tap.
(See fir_double_z in FirAlgs.c above.)
Duplicate the delay line: For a FIR with N taps, use a delay line of size 2N.
Copy each sample to its proper location, as well as at location-plus-N.
Therefore, the FIR calculation's MAC loop can be done on a flat buffer of N
points, starting anywhere within the first set of N points. The second set of
N delayed samples provides the "wrap around" comparable to a true circular
buffer. (See fir_double_z in FirAlgs.c above.)
Duplicate the coefficients: This is similar to the above, except that the
duplication occurs in terms of the coefficients, not the delay line.
Compared to the previous method, this has a calculation advantage of not
having to store each incoming sample twice, and it also has a memory
advantage when the same coefficient set will be used on multiple delay lines.
(See fir_double_h in FirAlgs.c above.)
Use block processing: In block processing, you use a delay line which is a
multiple of the number of taps. You therefore only have to move the data
once per block to implement the delay-line mechanism. When the block size
becomes "large", the overhead of a moving the delay line once per block
becomes negligible.
*/
#if 0
template<size_t N>
class FIRAndDecimateBy2Complex {
public:
FIR64AndDecimateBy2Complex(
const std::array<int16_t, N>& taps
) : taps { taps }
{
}
buffer_c16_t execute(
buffer_c16_t const src,
buffer_c16_t const dst
) {
/* int16_t input (sample count "n" must be multiple of 4)
* -> int16_t output, decimated by 2.
* taps are normalized to 1 << 16 == 1.0.
*/
return { dst.p, src.count / 2 };
}
private:
std::array<complex16_t, N> z;
const std::array<int16_t, N>& taps;
complex<int16_t> process_one(const size_t start_offset) {
const auto split = &z[start_offset];
const auto end = &z[z.size()];
auto tap = &taps[0];
complex<int32_t> t { 0, 0 };
auto p = split;
while(p < end) {
const auto t = *(tap++);
const auto c = *(p++);
t.real += c.real * t;
t.imag += c.imag * t;
}
p = &z[0];
while(p < split) {
const auto t = *(tap++);
const auto c = *(p++);
t.real += c.real * t;
t.imag += c.imag * t;
}
return { t.real / 65536, t.imag / 65536 };
}
};
#endif
} /* namespace decimate */ } /* namespace decimate */
} /* namespace dsp */ } /* namespace dsp */