Radiosonde-vaisala-add-temp-humidity

Also added the fields "DateTime" which just shows the raw timestamp that portapack assigned the last packet received, in the format: YYYYMMDDHHMMSS ... And "Frame" which shows the packet # (or frame) for correlating with other software / verify that there are new packets being received.

Also moved a string function for returning rounded-up decimals, originally inside the whipcalc tool app, into the string_format functions library, because I used that function on TEMP and HUMIDITY values inisde the radiosonde app.

Finally, the whole UI has its widgets moved a bit, giving space for these new parameters.
This commit is contained in:
euquiq 2020-08-24 17:31:27 -03:00
parent c626d83c3b
commit 13abb620f6
8 changed files with 409 additions and 134 deletions

View File

@ -24,9 +24,14 @@
#include "baseband_api.hpp" #include "baseband_api.hpp"
#include "portapack.hpp" #include "portapack.hpp"
#include <cstring>
#include <stdio.h>
using namespace portapack; using namespace portapack;
#include "string_format.hpp" #include "string_format.hpp"
#include "complex.hpp"
void SondeLogger::on_packet(const sonde::Packet& packet) { void SondeLogger::on_packet(const sonde::Packet& packet) {
const auto formatted = packet.symbols_formatted(); const auto formatted = packet.symbols_formatted();
@ -46,9 +51,14 @@ SondeView::SondeView(NavigationView& nav) {
&field_vga, &field_vga,
&rssi, &rssi,
&check_log, &check_log,
&check_crc,
&text_signature, &text_signature,
&text_serial, &text_serial,
&text_timestamp,
&text_voltage, &text_voltage,
&text_frame,
&text_temp,
&text_humid,
&geopos, &geopos,
&button_see_map &button_see_map
}); });
@ -74,6 +84,10 @@ SondeView::SondeView(NavigationView& nav) {
logging = v; logging = v;
}; };
check_crc.on_select = [this](Checkbox&, bool v) {
use_crc = v;
};
radio::enable({ radio::enable({
tuning_frequency(), tuning_frequency(),
sampling_rate, sampling_rate,
@ -109,26 +123,46 @@ void SondeView::focus() {
field_vga.focus(); field_vga.focus();
} }
void SondeView::on_packet(const sonde::Packet& packet) { void SondeView::on_packet(const sonde::Packet &packet)
//const auto hex_formatted = packet.symbols_formatted(); {
if (!use_crc || packet.crc_ok()) //euquiq: Reject bad packet if crc is on
{
text_signature.set(packet.type_string());
text_signature.set(packet.type_string()); sonde_id = packet.serial_number(); //used also as tag on the geomap
sonde_id = packet.serial_number(); //used also as tag on the geomap text_serial.set(sonde_id);
text_serial.set(sonde_id);
text_voltage.set(unit_auto_scale(packet.battery_voltage(), 2, 3) + "V");
gps_info = packet.get_GPS_data(); text_timestamp.set(to_string_timestamp(packet.received_at()));
geopos.set_altitude(gps_info.alt); text_voltage.set(unit_auto_scale(packet.battery_voltage(), 2, 2) + "V");
geopos.set_lat(gps_info.lat);
geopos.set_lon(gps_info.lon);
if (logger && logging) { text_frame.set(to_string_dec_uint(packet.frame(),0)); //euquiq: integrate frame #, temp & humid.
logger->on_packet(packet);
temp_humid_info = packet.get_temp_humid();
if (temp_humid_info.humid != 0)
{
double decimals = abs(get_decimals(temp_humid_info.humid, 10, true));
//if (decimals < 0)
// decimals = -decimals;
text_humid.set(to_string_dec_int((int)temp_humid_info.humid) + "." + to_string_dec_uint(decimals, 1) + "%");
}
if (temp_humid_info.temp != 0)
{
double decimals = abs(get_decimals(temp_humid_info.temp, 10, true));
// if (decimals < 0)
// decimals = -decimals;
text_temp.set(to_string_dec_int((int)temp_humid_info.temp) + "." + to_string_dec_uint(decimals, 1) + "C");
}
gps_info = packet.get_GPS_data();
geopos.set_altitude(gps_info.alt);
geopos.set_lat(gps_info.lat);
geopos.set_lon(gps_info.lon);
if (logger && logging)
logger->on_packet(packet);
} }
/*if( packet.crc_ok() ) {
}*/
} }
void SondeView::set_target_frequency(const uint32_t new_value) { void SondeView::set_target_frequency(const uint32_t new_value) {

View File

@ -67,18 +67,26 @@ private:
std::unique_ptr<SondeLogger> logger { }; std::unique_ptr<SondeLogger> logger { };
uint32_t target_frequency_ { 402700000 }; uint32_t target_frequency_ { 402700000 };
bool logging { false }; bool logging { false };
bool use_crc { false };
sonde::GPS_data gps_info; sonde::GPS_data gps_info;
sonde::temp_humid temp_humid_info;
std::string sonde_id; std::string sonde_id;
Labels labels { Labels labels {
{ { 0 * 8, 2 * 16 }, "Signature:", Color::light_grey() }, { { 4 * 8, 2 * 16 }, "Type:", Color::light_grey() },
{ { 3 * 8, 3 * 16 }, "Serial:", Color::light_grey() }, { { 6 * 8, 3 * 16 }, "ID:", Color::light_grey() },
{ { 4 * 8, 4 * 16 }, "Vbatt:", Color::light_grey() } { { 0 * 8, 4 * 16 }, "DateTime:", Color::light_grey() },
{ { 3 * 8, 5 * 16 }, "Vbatt:", Color::light_grey() },
{ { 3 * 8, 6 * 16 }, "Frame:", Color::light_grey() },
{ { 4 * 8, 7 * 16 }, "Temp:", Color::light_grey() },
{ { 0 * 8, 8 * 16 }, "Humidity:", Color::light_grey() }
}; };
FrequencyField field_frequency { FrequencyField field_frequency {
{ 0 * 8, 0 * 8 }, { 0 * 8, 0 * 8 },
}; };
RFAmpField field_rf_amp { RFAmpField field_rf_amp {
{ 13 * 8, 0 * 16 } { 13 * 8, 0 * 16 }
}; };
@ -96,31 +104,59 @@ private:
}; };
Checkbox check_log { Checkbox check_log {
{ 22 * 8, 3 * 16 }, { 23 * 8, 6 * 16 },
3, 3,
"Log" "Log"
}; };
Checkbox check_crc {
{ 23 * 8, 8 * 16 },
3,
"CRC"
};
Text text_signature { Text text_signature {
{ 10 * 8, 2 * 16, 10 * 8, 16 }, { 9 * 8, 2 * 16, 10 * 8, 16 },
"..." "..."
}; };
Text text_serial { Text text_serial {
{ 10 * 8, 3 * 16, 11 * 8, 16 }, { 9 * 8, 3 * 16, 11 * 8, 16 },
"..." "..."
}; };
Text text_timestamp {
{ 9 * 8, 4 * 16, 11 * 8, 16 },
"..."
};
Text text_voltage { Text text_voltage {
{ 10 * 8, 4 * 16, 10 * 8, 16 }, { 9 * 8, 5 * 16, 10 * 8, 16 },
"..."
};
Text text_frame {
{ 9 * 8, 6 * 16, 10 * 8, 16 },
"..."
};
Text text_temp {
{ 9 * 8, 7 * 16, 10 * 8, 16 },
"..."
};
Text text_humid {
{ 9 * 8, 8 * 16, 10 * 8, 16 },
"..." "..."
}; };
GeoPos geopos { GeoPos geopos {
{ 0, 6 * 16 }, { 0, 12 * 16 },
GeoPos::alt_unit::METERS GeoPos::alt_unit::METERS
}; };
Button button_see_map { Button button_see_map {
{ 8 * 8, 10 * 16, 14 * 8, 3 * 16 }, { 8 * 8, 16 * 16, 14 * 8, 3 * 16 },
"See on map" "See on map"
}; };

View File

@ -38,19 +38,6 @@ namespace ui
field_frequency.focus(); field_frequency.focus();
} }
double ui::WhipCalcView::get_decimals(double num, int16_t mult, bool round)
{
num -= int(num); //keep decimals only
num *= mult; //Shift decimals into integers
if (!round)
return num;
int16_t intnum = int(num); //Round it up if necessary
num -= intnum; //Get decimal part
if (num > .5)
intnum++; //Round up
return intnum;
}
void WhipCalcView::update_result() void WhipCalcView::update_result()
{ {
double length, calclength, divider; double length, calclength, divider;

View File

@ -51,7 +51,6 @@ namespace ui
}; };
std::vector<antenna_entry> antenna_db{}; std::vector<antenna_entry> antenna_db{};
double get_decimals(double num, int16_t mult, bool round = false);
void update_result(); void update_result();
uint16_t string_to_number(std::string); uint16_t string_to_number(std::string);
void txtline_process(std::string &); void txtline_process(std::string &);

View File

@ -224,3 +224,13 @@ std::string unit_auto_scale(double n, const uint32_t base_nano, uint32_t precisi
return string; return string;
} }
double get_decimals(double num, int16_t mult, bool round) {
num -= int(num); //keep decimals only
num *= mult; //Shift decimals into integers
if (!round) return num;
int16_t intnum = int(num); //Round it up if necessary
num -= intnum; //Get decimal part
if (num > .5) intnum++; //Round up
return intnum;
}

View File

@ -54,5 +54,5 @@ std::string to_string_timestamp(const rtc::RTC& value);
std::string to_string_FAT_timestamp(const FATTimestamp& timestamp); std::string to_string_FAT_timestamp(const FATTimestamp& timestamp);
std::string unit_auto_scale(double n, const uint32_t base_nano, uint32_t precision); std::string unit_auto_scale(double n, const uint32_t base_nano, uint32_t precision);
double get_decimals(double num, int16_t mult, bool round = false); //euquiq added
#endif/*__STRING_FORMAT_H__*/ #endif/*__STRING_FORMAT_H__*/

View File

@ -29,12 +29,16 @@ namespace sonde {
//Defines for Vaisala RS41, from https://github.com/rs1729/RS/blob/master/rs41/rs41sg.c //Defines for Vaisala RS41, from https://github.com/rs1729/RS/blob/master/rs41/rs41sg.c
#define MASK_LEN 64 #define MASK_LEN 64
//Following values include the 4 bytes less shift, consumed in detecting the header on proc_sonde
#define block_status 0x35 //0x039 // 40 bytes
#define block_gpspos 0x10E //0x112 // 21 bytes
#define block_meas 0x61 //0x65 // 42 bytes
#define pos_FrameNb 0x37 //0x03B // 2 byte #define pos_FrameNb 0x37 //0x03B // 2 byte
#define pos_SondeID 0x39 //0x03D // 8 byte #define pos_SondeID 0x39 //0x03D // 8 byte
#define pos_Voltage 0x041 //0x045 // 3 bytes (but first one is the important one) voltage x 10 ie: 26 = 2.6v #define pos_Voltage 0x041 //0x045 // 3 bytes (but first one is the important one) voltage x 10 ie: 26 = 2.6v
#define pos_CalData 0x04E //0x052 // 1 byte, counter 0x00..0x32 #define pos_CalData 0x04E //0x052 // 1 byte, counter 0x00..0x32
#define pos_GPSweek 0x091 //0x095 // 2 byte #define pos_temp 0x063 //0x067 // 3 bytes (uint24_t)
#define pos_GPSTOW 0x093 //0x097 // 4 byte
#define pos_GPSecefX 0x110 //0x114 // 4 byte #define pos_GPSecefX 0x110 //0x114 // 4 byte
#define pos_GPSecefY 0x114 //0x118 // 4 byte (not actually used since Y and Z are following X, and grabbed in that same loop) #define pos_GPSecefY 0x114 //0x118 // 4 byte (not actually used since Y and Z are following X, and grabbed in that same loop)
#define pos_GPSecefZ 0x118 //0x11C // 4 byte (same as Y) #define pos_GPSecefZ 0x118 //0x11C // 4 byte (same as Y)
@ -64,10 +68,6 @@ size_t Packet::length() const {
return decoder_.symbols_count(); return decoder_.symbols_count();
} }
bool Packet::is_valid() const {
return true; // TODO
}
Timestamp Packet::received_at() const { Timestamp Packet::received_at() const {
return packet_.timestamp(); return packet_.timestamp();
} }
@ -79,91 +79,216 @@ Packet::Type Packet::type() const {
//euquiq here: //euquiq here:
//RS41SG 320 bits header, 320bytes frame (or more if it is an "extended frame") //RS41SG 320 bits header, 320bytes frame (or more if it is an "extended frame")
//The raw data is xor-scrambled with the values in the 64 bytes vaisala_mask (see.hpp) //The raw data is xor-scrambled with the values in the 64 bytes vaisala_mask (see.hpp)
//from 0x008 to 0x037 (48 bytes reed-solomon error correction data)
uint8_t Packet::vaisala_descramble(const uint32_t pos) const
uint8_t Packet::vaisala_descramble(const uint32_t pos) const { { //vaisala_descramble(const uint32_t pos) const {
//return reader_raw.read(pos * 8, 8) ^ vaisala_mask[pos & 63];
// packet_[i]; its a bit; packet_.size the total (should be 2560 bits) // packet_[i]; its a bit; packet_.size the total (should be 2560 bits)
uint8_t value = 0; uint8_t value = 0;
for (uint8_t i = 0; i < 8; i++) for (uint8_t i = 0; i < 8; i++)
value = (value << 1) | packet_[(pos * 8) + (7 -i)]; //get the byte from the bits collection value = (value << 1) | packet_[(pos * 8) + (7 - i)]; //get the byte from the bits collection
//packetReader reader { packet_ }; //This works just as above. //packetReader reader { packet_ }; //This works just as above.
//value = reader.read(pos * 8,8); //value = reader.read(pos * 8,8);
//shift pos because first 4 bytes are consumed by proc_sonde in finding the vaisala signature //shift pos because first 4 bytes are consumed by proc_sonde in finding the vaisala signature
uint32_t mask_pos = pos + 4; uint32_t mask_pos = pos + 4;
value = value ^ vaisala_mask[mask_pos % MASK_LEN]; //descramble with the xor pseudorandom table value = value ^ vaisala_mask[mask_pos % MASK_LEN]; //descramble with the xor pseudorandom table
return value; return value;
}; };
GPS_data Packet::get_GPS_data() const { GPS_data Packet::get_GPS_data() const
{
GPS_data result; GPS_data result;
if ((type_ == Type::Meteomodem_M10) || (type_ == Type::Meteomodem_M2K2)) { if ((type_ == Type::Meteomodem_M10) || (type_ == Type::Meteomodem_M2K2))
{
result.alt = (reader_bi_m.read(22 * 8, 32) / 1000) - 48; result.alt = (reader_bi_m.read(22 * 8, 32) / 1000) - 48;
result.lat = reader_bi_m.read(14 * 8, 32) / ((1ULL << 32) / 360.0); result.lat = reader_bi_m.read(14 * 8, 32) / ((1ULL << 32) / 360.0);
result.lon = reader_bi_m.read(18 * 8, 32) / ((1ULL << 32) / 360.0); result.lon = reader_bi_m.read(18 * 8, 32) / ((1ULL << 32) / 360.0);
}
} else if (type_ == Type::Vaisala_RS41_SG) { else if (type_ == Type::Vaisala_RS41_SG)
{
uint8_t XYZ_bytes[4]; uint8_t XYZ_bytes[4];
int32_t XYZ; // 32bit int32_t XYZ; // 32bit
double_t X[3]; double_t X[3];
for (int32_t k = 0; k < 3; k++) { //Get X,Y,Z ECEF position from GPS for (int32_t k = 0; k < 3; k++)
for (int32_t i = 0; i < 4; i++) //each one is 4 bytes (32 bits) { //Get X,Y,Z ECEF position from GPS
XYZ_bytes[i] = vaisala_descramble(pos_GPSecefX + (4*k) + i); for (int32_t i = 0; i < 4; i++) //each one is 4 bytes (32 bits)
XYZ_bytes[i] = vaisala_descramble(pos_GPSecefX + (4 * k) + i);
memcpy(&XYZ, XYZ_bytes, 4); memcpy(&XYZ, XYZ_bytes, 4);
X[k] = XYZ / 100.0; X[k] = XYZ / 100.0;
} }
double_t a = 6378137.0; double_t a = 6378137.0;
double_t b = 6356752.31424518; double_t b = 6356752.31424518;
double_t e = sqrt( (a*a - b*b) / (a*a) ); double_t e = sqrt((a * a - b * b) / (a * a));
double_t ee = sqrt( (a*a - b*b) / (b*b) ); double_t ee = sqrt((a * a - b * b) / (b * b));
double_t lam = atan2( X[1] , X[0] ); double_t lam = atan2(X[1], X[0]);
double_t p = sqrt( X[0]*X[0] + X[1]*X[1] ); double_t p = sqrt(X[0] * X[0] + X[1] * X[1]);
double_t t = atan2( X[2]*a , p*b ); double_t t = atan2(X[2] * a, p * b);
double_t phi = atan2( X[2] + ee*ee * b * sin(t)*sin(t)*sin(t) , double_t phi = atan2(X[2] + ee * ee * b * sin(t) * sin(t) * sin(t),
p - e*e * a * cos(t)*cos(t)*cos(t) ); p - e * e * a * cos(t) * cos(t) * cos(t));
double_t R = a / sqrt( 1 - e*e*sin(phi)*sin(phi) ); double_t R = a / sqrt(1 - e * e * sin(phi) * sin(phi));
result.alt = p / cos(phi) - R; result.alt = p / cos(phi) - R;
result.lat = phi*180/PI; result.lat = phi * 180 / PI;
result.lon = lam*180/PI; result.lon = lam * 180 / PI;
} }
return result; return result;
} }
uint32_t Packet::battery_voltage() const { uint32_t Packet::battery_voltage() const
{
if (type_ == Type::Meteomodem_M10) if (type_ == Type::Meteomodem_M10)
return (reader_bi_m.read(69 * 8, 8) + (reader_bi_m.read(70 * 8, 8) << 8)) * 1000 / 150; return (reader_bi_m.read(69 * 8, 8) + (reader_bi_m.read(70 * 8, 8) << 8)) * 1000 / 150;
else if (type_ == Type::Meteomodem_M2K2) else if (type_ == Type::Meteomodem_M2K2)
return reader_bi_m.read(69 * 8, 8) * 66; // Actually 65.8 return reader_bi_m.read(69 * 8, 8) * 66; // Actually 65.8
else if (type_ == Type::Vaisala_RS41_SG) { else if (type_ == Type::Vaisala_RS41_SG)
uint32_t voltage = vaisala_descramble(pos_Voltage) * 100; //byte 69 = voltage * 10 (check if this value needs to be multiplied) {
uint32_t voltage = vaisala_descramble(pos_Voltage) * 100; //byte 69 = voltage * 10 (check if this value needs to be multiplied)
return voltage; return voltage;
} }
else { else
return 0; // Unknown {
return 0; // Unknown
} }
} }
std::string Packet::type_string() const { uint32_t Packet::frame() const
switch (type_) { {
case Type::Unknown: return "Unknown"; if (type_ == Type::Vaisala_RS41_SG)
case Type::Meteomodem_unknown: return "Meteomodem ???"; {
case Type::Meteomodem_M10: return "Meteomodem M10"; uint32_t frame_number = vaisala_descramble(pos_FrameNb) | (vaisala_descramble(pos_FrameNb + 1) << 8);
case Type::Meteomodem_M2K2: return "Meteomodem M2K2"; return frame_number;
case Type::Vaisala_RS41_SG: return "Vaisala RS41-SG"; }
default: return "? 0x" + symbols_formatted().data.substr(0, 6); else
{
return 0; // Unknown
} }
} }
std::string Packet::serial_number() const { temp_humid Packet::get_temp_humid() const
if (type() == Type::Meteomodem_M10) { {
temp_humid result;
result.humid = 0;
result.temp = 0;
if ( type_ == Type::Vaisala_RS41_SG && crc_ok_RS41() ) //Only process if packet is healthy
{
//memset(calfrchk, 0, 51); // is this necessary ? only if the sondeID changes (new sonde)
//original code from https://github.com/rs1729/RS/blob/master/rs41/rs41ptu.c
float Rf1, // ref-resistor f1 (750 Ohm)
Rf2, // ref-resistor f2 (1100 Ohm)
co1[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT1[3], // calibration T1
co2[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT2[3], // calibration T2-Hum
calH[2]; // calibration Hum
uint32_t meas[12], i;
//-------------- get_CalData
//-------------- populate calibytes (from getFrameConf)
uint8_t calfr = vaisala_descramble(pos_CalData); //get subframe #slot
for (i = 0; i < 16; i++) //Load subrfame calibration page (16 bytes) into #slot
calibytes[calfr * 16 + i] = vaisala_descramble(pos_CalData + 1 + i); //pos = pos_CalData + 1 + i ; vaisala_descramble(pos)
calfrchk[calfr] = 1; //flag this #slot as populated
memcpy(&Rf1, calibytes + 61, 4); // 0x03*0x10+13
memcpy(&Rf2, calibytes + 65, 4); // 0x04*0x10+ 1
memcpy(co1 + 0, calibytes + 77, 4); // 0x04*0x10+13
memcpy(co1 + 1, calibytes + 81, 4); // 0x05*0x10+ 1
memcpy(co1 + 2, calibytes + 85, 4); // 0x05*0x10+ 5
memcpy(calT1 + 0, calibytes + 89, 4); // 0x05*0x10+ 9
memcpy(calT1 + 1, calibytes + 93, 4); // 0x05*0x10+13
memcpy(calT1 + 2, calibytes + 97, 4); // 0x06*0x10+ 1
memcpy(calH + 0, calibytes + 117, 4); // 0x07*0x10+ 5
memcpy(calH + 1, calibytes + 121, 4); // 0x07*0x10+ 9
memcpy(co2 + 0, calibytes + 293, 4); // 0x12*0x10+ 5
memcpy(co2 + 1, calibytes + 297, 4); // 0x12*0x10+ 9
memcpy(co2 + 2, calibytes + 301, 4); // 0x12*0x10+13
memcpy(calT2 + 0, calibytes + 305, 4); // 0x13*0x10+ 1
memcpy(calT2 + 1, calibytes + 309, 4); // 0x13*0x10+ 5
memcpy(calT2 + 2, calibytes + 313, 4); // 0x13*0x10+ 9
//---------------------------------------
for (i = 0; i < 12; i++)
meas[i] = vaisala_descramble(pos_temp + (3 * i)) |
(vaisala_descramble(pos_temp + (3 * i) + 1) << 8) |
(vaisala_descramble(pos_temp + (3 * i) + 2) << 16);
//----Check if necessary calibytes are already present for calculation
if (calfrchk[0x03] && calfrchk[0x04] && calfrchk[0x04] && calfrchk[0x05] && calfrchk[0x05] && calfrchk[0x06]) //Calibites OK for Temperature
{
//----------get_Tc------------------------
float *p = co1;
float *c = calT1;
float g = (float)(meas[2] - meas[1]) / (Rf2 - Rf1), // gain
Rb = (meas[1] * Rf2 - meas[2] * Rf1) / (float)(meas[2] - meas[1]), // ofs
Rc = meas[0] / g - Rb,
R = Rc * c[0],
T = (p[0] + p[1] * R + p[2] * R * R + c[1]) * (1.0 + c[2]);
result.temp = T;
}
if (calfrchk[0x07])
{
//----------get_RH------------------------
float a0 = 7.5; // empirical
float a1 = 350.0 / calH[0]; // empirical
float fh = (meas[3] - meas[4]) / (float)(meas[5] - meas[4]);
float rh = 100.0 * (a1 * fh - a0);
float T0 = 0.0, T1 = -25.0; // T/C
rh += T0 - result.temp / 5.5; // empir. temperature compensation
if (result.temp < T1)
rh *= 1.0 + (T1 - result.temp) / 90.0; // empir. temperature compensation
if (rh < 0.0)
rh = 0.0;
if (rh > 100.0)
rh = 100.0;
if (result.temp < -273.0)
rh = -1.0;
result.humid = rh;
}
}
return result;
}
std::string Packet::type_string() const
{
switch (type_)
{
case Type::Unknown:
return "Unknown";
case Type::Meteomodem_unknown:
return "Meteomodem ???";
case Type::Meteomodem_M10:
return "Meteomodem M10";
case Type::Meteomodem_M2K2:
return "Meteomodem M2K2";
case Type::Vaisala_RS41_SG:
return "Vaisala RS41-SG";
default:
return "? 0x" + symbols_formatted().data.substr(0, 6);
}
}
std::string Packet::serial_number() const
{
if (type_ == Type::Meteomodem_M10)
{
// See https://github.com/rs1729/RS/blob/master/m10/m10x.c line 606 // See https://github.com/rs1729/RS/blob/master/m10/m10x.c line 606
// Starting at byte #93: 00000000 11111111 22222222 33333333 44444444 // Starting at byte #93: 00000000 11111111 22222222 33333333 44444444
// CCCC AAAABBBB // CCCC AAAABBBB
@ -171,52 +296,126 @@ std::string Packet::serial_number() const {
// DDDEEEEE EEEEEEEE // DDDEEEEE EEEEEEEE
return to_string_hex(reader_bi_m.read(93 * 8 + 16, 4), 1) + return to_string_hex(reader_bi_m.read(93 * 8 + 16, 4), 1) +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 20, 4), 2, '0') + " " + to_string_dec_uint(reader_bi_m.read(93 * 8 + 20, 4), 2, '0') + " " +
to_string_hex(reader_bi_m.read(93 * 8 + 4, 4), 1) + " " + to_string_hex(reader_bi_m.read(93 * 8 + 4, 4), 1) + " " +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 24, 3), 1) + to_string_dec_uint(reader_bi_m.read(93 * 8 + 24, 3), 1) +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 27, 13), 4, '0'); to_string_dec_uint(reader_bi_m.read(93 * 8 + 27, 13), 4, '0');
}
} else if(type() == Type::Vaisala_RS41_SG) { else if (type_ == Type::Vaisala_RS41_SG)
{
std::string serial_id = ""; std::string serial_id = "";
uint8_t achar; uint8_t achar;
for (uint8_t i=0; i<8; i++) { //euquiq: Serial ID is 8 bytes long, each byte a char for (uint8_t i = 0; i < 8; i++)
{ //euquiq: Serial ID is 8 bytes long, each byte a char
achar = vaisala_descramble(pos_SondeID + i); achar = vaisala_descramble(pos_SondeID + i);
if (achar < 32 || achar > 126) return "?"; //Maybe there are ids with less than 8 bytes and this is not OK. if (achar < 32 || achar > 126)
return "?"; //Maybe there are ids with less than 8 bytes and this is not OK.
serial_id += (char)achar; serial_id += (char)achar;
} }
return serial_id; return serial_id;
} else }
else
{
return "?"; return "?";
}
} }
FormattedSymbols Packet::symbols_formatted() const { FormattedSymbols Packet::symbols_formatted() const
if (type() == Type::Vaisala_RS41_SG) { //Euquiq: now we distinguish different types {
uint32_t bytes = packet_.size() / 8; //Need the byte amount, which if full, it SHOULD be 320 size() should return 2560 if (type_ == Type::Vaisala_RS41_SG)
{ //Euquiq: now we distinguish different types
uint32_t bytes = packet_.size() / 8; //Need the byte amount, which if full, it SHOULD be 320 size() should return 2560
std::string hex_data; std::string hex_data;
std::string hex_error; std::string hex_error;
hex_data.reserve(bytes * 2); //2 hexa chars per byte hex_data.reserve(bytes * 2); //2 hexa chars per byte
hex_error.reserve(1); hex_error.reserve(1);
for (uint32_t i=0; i < bytes; i++) //log will show the packet starting on the last 4 bytes from signature 93DF1A60 for (uint32_t i = 0; i < bytes; i++) //log will show the packet starting on the last 4 bytes from signature 93DF1A60
hex_data += to_string_hex(vaisala_descramble(i),2); hex_data += to_string_hex(vaisala_descramble(i), 2);
return { hex_data, hex_error }; return {hex_data, hex_error};
}
} else { else
{
return format_symbols(decoder_); return format_symbols(decoder_);
} }
} }
bool Packet::crc_ok() const { bool Packet::crc_ok() const
switch(type()) { {
case Type::Meteomodem_M10: return crc_ok_M10(); switch (type_)
default: return false; {
case Type::Meteomodem_M10:
return crc_ok_M10();
case Type::Vaisala_RS41_SG:
return crc_ok_RS41();
default:
return true; //euquiq: it was false, but if no crc routine, then no way to check
} }
} }
bool Packet::crc_ok_M10() const { //each data block has a 2 byte header, data, and 2 byte tail:
uint16_t cs { 0 }; // 1st byte: block ID
uint32_t c0, c1, t, t6, t7, s,b ; // 2nd byte: data length (without header or tail)
// <data>
// 2 bytes CRC16 over the data.
bool Packet::crc_ok_RS41() const //check CRC for the data blocks we need
{
if (!crc16rs41(block_status))
return false;
for (size_t i = 0; i < packet_.size(); i++) { if (!crc16rs41(block_gpspos))
return false;
if (!crc16rs41(block_meas))
return false;
return true;
}
//Checks CRC16 on a RS41 field:
bool Packet::crc16rs41(uint32_t field_start) const
{
int crc16poly = 0x1021;
int rem = 0xFFFF, b, j;
int xbyte;
uint32_t pos = field_start + 1;
uint8_t length = vaisala_descramble(pos);
if (pos + length + 2 > packet_.size() / 8)
return false; //Out of packet!
for (b = 0; b < length; b++)
{
pos++;
xbyte = vaisala_descramble(pos);
rem = rem ^ (xbyte << 8);
for (j = 0; j < 8; j++)
{
if (rem & 0x8000)
{
rem = (rem << 1) ^ crc16poly;
}
else
{
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
//Check calculated CRC against packet's one
pos++;
int crcok = vaisala_descramble(pos) | (vaisala_descramble(pos + 1) << 8);
if (crcok != rem)
return false;
return true;
}
bool Packet::crc_ok_M10() const
{
uint16_t cs{0};
uint32_t c0, c1, t, t6, t7, s, b;
for (size_t i = 0; i < packet_.size(); i++)
{
b = packet_[i]; b = packet_[i];
c1 = cs & 0xFF; c1 = cs & 0xFF;
@ -235,8 +434,8 @@ bool Packet::crc_ok_M10() const {
c0 = b ^ t ^ s; c0 = b ^ t ^ s;
cs = ((c1<<8) | c0) & 0xFFFF; cs = ((c1 << 8) | c0) & 0xFFFF;
} }
return ((cs & 0xFFFF) == ((packet_[0x63] << 8) | (packet_[0x63 + 1]))); return ((cs & 0xFFFF) == ((packet_[0x63] << 8) | (packet_[0x63 + 1])));
} }

View File

@ -32,12 +32,20 @@
namespace sonde { namespace sonde {
static uint8_t calibytes[51*16]; //need these vars to survive
static uint8_t calfrchk[51]; //so subframes are preserved while populated
struct GPS_data { struct GPS_data {
uint32_t alt { 0 }; uint32_t alt { 0 };
float lat { 0 }; float lat { 0 };
float lon { 0 }; float lon { 0 };
}; };
struct temp_humid {
float temp { 0 };
float humid { 0 };
};
class Packet { class Packet {
public: public:
enum class Type : uint32_t { enum class Type : uint32_t {
@ -52,8 +60,6 @@ public:
size_t length() const; size_t length() const;
bool is_valid() const;
Timestamp received_at() const; Timestamp received_at() const;
Type type() const; Type type() const;
@ -61,8 +67,9 @@ public:
std::string serial_number() const; std::string serial_number() const;
uint32_t battery_voltage() const; uint32_t battery_voltage() const;
GPS_data get_GPS_data() const; GPS_data get_GPS_data() const;
uint32_t frame() const;
temp_humid get_temp_humid() const;
FormattedSymbols symbols_formatted() const; FormattedSymbols symbols_formatted() const;
@ -90,7 +97,10 @@ private:
Type type_; Type type_;
using packetReader = FieldReader<baseband::Packet, BitRemapByteReverse>; //baseband::Packet instead of BiphaseMDecoder using packetReader = FieldReader<baseband::Packet, BitRemapByteReverse>; //baseband::Packet instead of BiphaseMDecoder
bool crc_ok_M10() const; bool crc_ok_M10() const;
bool crc_ok_RS41() const;
bool crc16rs41(uint32_t field_start) const;
}; };
} /* namespace sonde */ } /* namespace sonde */