mirror of
https://github.com/eried/portapack-mayhem.git
synced 2025-06-28 16:47:22 -04:00
Formatted code (#1007)
* Updated style * Updated files * fixed new line * Updated spacing * File fix WIP * Updated to clang 13 * updated comment style * Removed old comment code
This commit is contained in:
parent
7aca7ce74d
commit
033c4e9a5b
599 changed files with 70746 additions and 66896 deletions
|
@ -36,107 +36,104 @@
|
|||
#include "sine_table_int8.hpp"
|
||||
|
||||
namespace std {
|
||||
/* https://github.com/AE9RB/fftbench/blob/master/cxlr.hpp
|
||||
* Nice trick from AE9RB (David Turnbull) to get compiler to produce simpler
|
||||
* fma (fused multiply-accumulate) instead of worrying about NaN handling
|
||||
*/
|
||||
inline complex<float>
|
||||
operator*(const complex<float>& v1, const complex<float>& v2) {
|
||||
return complex<float> {
|
||||
v1.real() * v2.real() - v1.imag() * v2.imag(),
|
||||
v1.real() * v2.imag() + v1.imag() * v2.real()
|
||||
};
|
||||
}
|
||||
/* https://github.com/AE9RB/fftbench/blob/master/cxlr.hpp
|
||||
* Nice trick from AE9RB (David Turnbull) to get compiler to produce simpler
|
||||
* fma (fused multiply-accumulate) instead of worrying about NaN handling
|
||||
*/
|
||||
inline complex<float>
|
||||
operator*(const complex<float>& v1, const complex<float>& v2) {
|
||||
return complex<float>{
|
||||
v1.real() * v2.real() - v1.imag() * v2.imag(),
|
||||
v1.real() * v2.imag() + v1.imag() * v2.real()};
|
||||
}
|
||||
} /* namespace std */
|
||||
|
||||
template<typename T, size_t N>
|
||||
template <typename T, size_t N>
|
||||
void fft_swap(const buffer_c16_t src, std::array<T, N>& dst) {
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
|
||||
for(size_t i=0; i<N; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
const auto s = src.p[i];
|
||||
dst[i_rev] = {
|
||||
static_cast<typename T::value_type>(s.real()),
|
||||
static_cast<typename T::value_type>(s.imag())
|
||||
};
|
||||
}
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
const auto s = src.p[i];
|
||||
dst[i_rev] = {
|
||||
static_cast<typename T::value_type>(s.real()),
|
||||
static_cast<typename T::value_type>(s.imag())};
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
template <typename T, size_t N>
|
||||
void fft_swap(const std::array<complex16_t, N>& src, std::array<T, N>& dst) {
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
|
||||
for(size_t i=0; i<N; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
const auto s = src[i];
|
||||
dst[i_rev] = {
|
||||
static_cast<typename T::value_type>(s.real()),
|
||||
static_cast<typename T::value_type>(s.imag())
|
||||
};
|
||||
}
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
const auto s = src[i];
|
||||
dst[i_rev] = {
|
||||
static_cast<typename T::value_type>(s.real()),
|
||||
static_cast<typename T::value_type>(s.imag())};
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
template <typename T, size_t N>
|
||||
void fft_swap(const std::array<T, N>& src, std::array<T, N>& dst) {
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
|
||||
for(size_t i=0; i<N; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
dst[i_rev] = src[i];
|
||||
}
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
dst[i_rev] = src[i];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
template <typename T, size_t N>
|
||||
void fft_swap_in_place(std::array<T, N>& data) {
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
|
||||
for(size_t i=0; i<N/2; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
std::swap(data[i], data[i_rev]);
|
||||
}
|
||||
for (size_t i = 0; i < N / 2; i++) {
|
||||
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
||||
std::swap(data[i], data[i_rev]);
|
||||
}
|
||||
}
|
||||
|
||||
/* http://beige.ucs.indiana.edu/B673/node14.html */
|
||||
/* http://www.drdobbs.com/cpp/a-simple-and-efficient-fft-implementatio/199500857?pgno=3 */
|
||||
|
||||
template<typename T, size_t N>
|
||||
template <typename T, size_t N>
|
||||
void fft_c_preswapped(std::array<T, N>& data, const size_t from, const size_t to) {
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
constexpr auto K = log_2(N);
|
||||
if ((to > K) || (from > K)) return;
|
||||
static_assert(power_of_two(N), "only defined for N == power of two");
|
||||
constexpr auto K = log_2(N);
|
||||
if ((to > K) || (from > K)) return;
|
||||
|
||||
constexpr size_t K_max = 8;
|
||||
static_assert(K <= K_max, "No FFT twiddle factors for K > 8");
|
||||
static constexpr std::array<std::complex<float>, K_max> wp_table { {
|
||||
{ -2.0f, 0.0f }, // 2
|
||||
{ -1.0f, -1.0f }, // 4
|
||||
{ -0.2928932188134524756f, -0.7071067811865475244f }, // 8
|
||||
{ -0.076120467488713243872f, -0.38268343236508977173f }, // 16
|
||||
{ -0.019214719596769550874f, -0.19509032201612826785f }, // 32
|
||||
{ -0.0048152733278031137552f, -0.098017140329560601994f }, // 64
|
||||
{ -0.0012045437948276072852f, -0.049067674327418014255f }, // 128
|
||||
{ -0.00030118130379577988423f, -0.024541228522912288032f }, // 256
|
||||
} };
|
||||
constexpr size_t K_max = 8;
|
||||
static_assert(K <= K_max, "No FFT twiddle factors for K > 8");
|
||||
static constexpr std::array<std::complex<float>, K_max> wp_table{{
|
||||
{-2.0f, 0.0f}, // 2
|
||||
{-1.0f, -1.0f}, // 4
|
||||
{-0.2928932188134524756f, -0.7071067811865475244f}, // 8
|
||||
{-0.076120467488713243872f, -0.38268343236508977173f}, // 16
|
||||
{-0.019214719596769550874f, -0.19509032201612826785f}, // 32
|
||||
{-0.0048152733278031137552f, -0.098017140329560601994f}, // 64
|
||||
{-0.0012045437948276072852f, -0.049067674327418014255f}, // 128
|
||||
{-0.00030118130379577988423f, -0.024541228522912288032f}, // 256
|
||||
}};
|
||||
|
||||
/* Provide data to this function, pre-swapped. */
|
||||
for(size_t k = from; k < to; k++) {
|
||||
const size_t mmax = 1 << k;
|
||||
const auto wp = wp_table[k];
|
||||
T w { 1.0f, 0.0f };
|
||||
for(size_t m = 0; m < mmax; ++m) {
|
||||
for(size_t i = m; i < N; i += mmax * 2) {
|
||||
const size_t j = i + mmax;
|
||||
const T temp = w * data[j];
|
||||
data[j] = data[i] - temp;
|
||||
data[i] += temp;
|
||||
}
|
||||
w += w * wp;
|
||||
}
|
||||
}
|
||||
/* Provide data to this function, pre-swapped. */
|
||||
for (size_t k = from; k < to; k++) {
|
||||
const size_t mmax = 1 << k;
|
||||
const auto wp = wp_table[k];
|
||||
T w{1.0f, 0.0f};
|
||||
for (size_t m = 0; m < mmax; ++m) {
|
||||
for (size_t i = m; i < N; i += mmax * 2) {
|
||||
const size_t j = i + mmax;
|
||||
const T temp = w * data[j];
|
||||
data[j] = data[i] - temp;
|
||||
data[i] += temp;
|
||||
}
|
||||
w += w * wp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
/*
|
||||
ifft(v,N):
|
||||
[0] If N==1 then return.
|
||||
[1] For k = 0 to N/2-1, let ve[k] = v[2*k]
|
||||
|
@ -149,32 +146,32 @@ void fft_c_preswapped(std::array<T, N>& data, const size_t from, const size_t to
|
|||
[8] Let v[m] = ve[m] + w*vo[m]
|
||||
[9] Let v[m+N/2] = ve[m] - w*vo[m]
|
||||
*/
|
||||
template<typename T>
|
||||
void ifft( T *v, int n, T *tmp )
|
||||
{
|
||||
if(n>1) {
|
||||
int k,m;
|
||||
T z, w, *vo, *ve;
|
||||
ve = tmp; vo = tmp+n/2;
|
||||
for(k=0; k<n/2; k++) {
|
||||
ve[k] = v[2*k];
|
||||
vo[k] = v[2*k+1];
|
||||
template <typename T>
|
||||
void ifft(T* v, int n, T* tmp) {
|
||||
if (n > 1) {
|
||||
int k, m;
|
||||
T z, w, *vo, *ve;
|
||||
ve = tmp;
|
||||
vo = tmp + n / 2;
|
||||
for (k = 0; k < n / 2; k++) {
|
||||
ve[k] = v[2 * k];
|
||||
vo[k] = v[2 * k + 1];
|
||||
}
|
||||
ifft( ve, n/2, v ); /* FFT on even-indexed elements of v[] */
|
||||
ifft( vo, n/2, v ); /* FFT on odd-indexed elements of v[] */
|
||||
for(m=0; m<n/2; m++) {
|
||||
w.real(sine_table_i8[((int)(m/(double)n * 0x100 + 0x40)) & 0xFF]);
|
||||
w.imag(sine_table_i8[((int)(m/(double)n * 0x100)) & 0xFF]);
|
||||
ifft(ve, n / 2, v); /* FFT on even-indexed elements of v[] */
|
||||
ifft(vo, n / 2, v); /* FFT on odd-indexed elements of v[] */
|
||||
for (m = 0; m < n / 2; m++) {
|
||||
w.real(sine_table_i8[((int)(m / (double)n * 0x100 + 0x40)) & 0xFF]);
|
||||
w.imag(sine_table_i8[((int)(m / (double)n * 0x100)) & 0xFF]);
|
||||
|
||||
z.real((w.real()*vo[m].real() - w.imag()*vo[m].imag())/127); /* Re(w*vo[m]) */
|
||||
z.imag((w.real()*vo[m].imag() + w.imag()*vo[m].real())/127); /* Im(w*vo[m]) */
|
||||
v[ m ].real(ve[m].real() + z.real());
|
||||
v[ m ].imag(ve[m].imag() + z.imag());
|
||||
v[m+n/2].real(ve[m].real() - z.real());
|
||||
v[m+n/2].imag(ve[m].imag() - z.imag());
|
||||
z.real((w.real() * vo[m].real() - w.imag() * vo[m].imag()) / 127); /* Re(w*vo[m]) */
|
||||
z.imag((w.real() * vo[m].imag() + w.imag() * vo[m].real()) / 127); /* Im(w*vo[m]) */
|
||||
v[m].real(ve[m].real() + z.real());
|
||||
v[m].imag(ve[m].imag() + z.imag());
|
||||
v[m + n / 2].real(ve[m].real() - z.real());
|
||||
v[m + n / 2].imag(ve[m].imag() - z.imag());
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
#endif/*__DSP_FFT_H__*/
|
||||
#endif /*__DSP_FFT_H__*/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue