2023-12-08 07:12:48 -05:00
|
|
|
#ifndef __FPROTO_GENERAL_H__
|
|
|
|
#define __FPROTO_GENERAL_H__
|
|
|
|
|
2023-12-08 07:32:28 -05:00
|
|
|
// useful methods for both weather and subghzd
|
|
|
|
|
2023-12-08 07:12:48 -05:00
|
|
|
#include <stdint.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
|
|
|
|
#define bit_read(value, bit) (((value) >> (bit)) & 0x01)
|
|
|
|
|
|
|
|
#define DURATION_DIFF(x, y) (((x) < (y)) ? ((y) - (x)) : ((x) - (y)))
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
ManchesterStateStart1 = 0,
|
|
|
|
ManchesterStateMid1 = 1,
|
|
|
|
ManchesterStateMid0 = 2,
|
|
|
|
ManchesterStateStart0 = 3
|
|
|
|
} ManchesterState;
|
|
|
|
typedef enum {
|
|
|
|
ManchesterEventShortLow = 0,
|
|
|
|
ManchesterEventShortHigh = 2,
|
|
|
|
ManchesterEventLongLow = 4,
|
|
|
|
ManchesterEventLongHigh = 6,
|
|
|
|
ManchesterEventReset = 8
|
|
|
|
} ManchesterEvent;
|
|
|
|
|
|
|
|
class FProtoGeneral {
|
|
|
|
public:
|
|
|
|
static bool manchester_advance(
|
|
|
|
ManchesterState state,
|
|
|
|
ManchesterEvent event,
|
|
|
|
ManchesterState* next_state,
|
|
|
|
bool* data) {
|
|
|
|
bool result = false;
|
|
|
|
ManchesterState new_state;
|
|
|
|
|
|
|
|
if (event == ManchesterEventReset) {
|
|
|
|
new_state = ManchesterStateMid1;
|
|
|
|
} else {
|
|
|
|
new_state = (ManchesterState)(transitions[state] >> event & 0x3);
|
|
|
|
if (new_state == state) {
|
|
|
|
new_state = ManchesterStateMid1;
|
|
|
|
} else {
|
|
|
|
if (new_state == ManchesterStateMid0) {
|
|
|
|
if (data) *data = false;
|
|
|
|
result = true;
|
|
|
|
} else if (new_state == ManchesterStateMid1) {
|
|
|
|
if (data) *data = true;
|
|
|
|
result = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*next_state = new_state;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
static uint8_t subghz_protocol_blocks_add_bytes(uint8_t const message[], size_t size) {
|
|
|
|
uint32_t result = 0;
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
|
|
result += message[i];
|
|
|
|
}
|
|
|
|
return (uint8_t)result;
|
|
|
|
}
|
|
|
|
static uint8_t subghz_protocol_blocks_parity8(uint8_t byte) {
|
|
|
|
byte ^= byte >> 4;
|
|
|
|
byte &= 0xf;
|
|
|
|
return (0x6996 >> byte) & 1;
|
|
|
|
}
|
|
|
|
static uint8_t subghz_protocol_blocks_parity_bytes(uint8_t const message[], size_t size) {
|
|
|
|
uint8_t result = 0;
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
|
|
result ^= subghz_protocol_blocks_parity8(message[i]);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
static uint8_t subghz_protocol_blocks_lfsr_digest8(
|
|
|
|
uint8_t const message[],
|
|
|
|
size_t size,
|
|
|
|
uint8_t gen,
|
|
|
|
uint8_t key) {
|
|
|
|
uint8_t sum = 0;
|
|
|
|
for (size_t byte = 0; byte < size; ++byte) {
|
|
|
|
uint8_t data = message[byte];
|
|
|
|
for (int i = 7; i >= 0; --i) {
|
|
|
|
// XOR key into sum if data bit is set
|
|
|
|
if ((data >> i) & 1) sum ^= key;
|
|
|
|
// roll the key right (actually the LSB is dropped here)
|
|
|
|
// and apply the gen (needs to include the dropped LSB as MSB)
|
|
|
|
if (key & 1)
|
|
|
|
key = (key >> 1) ^ gen;
|
|
|
|
else
|
|
|
|
key = (key >> 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
static float locale_fahrenheit_to_celsius(float temp_f) {
|
|
|
|
return (temp_f - 32.f) / 1.8f;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint8_t subghz_protocol_blocks_crc4(
|
|
|
|
uint8_t const message[],
|
|
|
|
size_t size,
|
|
|
|
uint8_t polynomial,
|
|
|
|
uint8_t init) {
|
|
|
|
uint8_t remainder = init << 4; // LSBs are unused
|
|
|
|
uint8_t poly = polynomial << 4;
|
|
|
|
uint8_t bit;
|
|
|
|
|
|
|
|
while (size--) {
|
|
|
|
remainder ^= *message++;
|
|
|
|
for (bit = 0; bit < 8; bit++) {
|
|
|
|
if (remainder & 0x80) {
|
|
|
|
remainder = (remainder << 1) ^ poly;
|
|
|
|
} else {
|
|
|
|
remainder = (remainder << 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return remainder >> 4 & 0x0f; // discard the LSBs
|
|
|
|
}
|
|
|
|
static uint8_t subghz_protocol_blocks_lfsr_digest8_reflect(
|
|
|
|
uint8_t const message[],
|
|
|
|
size_t size,
|
|
|
|
uint8_t gen,
|
|
|
|
uint8_t key) {
|
|
|
|
uint8_t sum = 0;
|
|
|
|
// Process message from last byte to first byte (reflected)
|
|
|
|
for (int byte = size - 1; byte >= 0; --byte) {
|
|
|
|
uint8_t data = message[byte];
|
|
|
|
// Process individual bits of each byte (reflected)
|
|
|
|
for (uint8_t i = 0; i < 8; ++i) {
|
|
|
|
// XOR key into sum if data bit is set
|
|
|
|
if ((data >> i) & 1) {
|
|
|
|
sum ^= key;
|
|
|
|
}
|
|
|
|
// roll the key left (actually the LSB is dropped here)
|
|
|
|
// and apply the gen (needs to include the dropped lsb as MSB)
|
|
|
|
if (key & 0x80)
|
|
|
|
key = (key << 1) ^ gen;
|
|
|
|
else
|
|
|
|
key = (key << 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
static uint64_t subghz_protocol_blocks_reverse_key(uint64_t key, uint8_t bit_count) {
|
|
|
|
uint64_t reverse_key = 0;
|
|
|
|
for (uint8_t i = 0; i < bit_count; i++) {
|
|
|
|
reverse_key = reverse_key << 1 | bit_read(key, i);
|
|
|
|
}
|
|
|
|
return reverse_key;
|
|
|
|
}
|
|
|
|
static uint8_t subghz_protocol_blocks_crc8(
|
|
|
|
uint8_t const message[],
|
|
|
|
size_t size,
|
|
|
|
uint8_t polynomial,
|
|
|
|
uint8_t init) {
|
|
|
|
uint8_t remainder = init;
|
|
|
|
|
|
|
|
for (size_t byte = 0; byte < size; ++byte) {
|
|
|
|
remainder ^= message[byte];
|
|
|
|
for (uint8_t bit = 0; bit < 8; ++bit) {
|
|
|
|
if (remainder & 0x80) {
|
|
|
|
remainder = (remainder << 1) ^ polynomial;
|
|
|
|
} else {
|
|
|
|
remainder = (remainder << 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return remainder;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
static inline const uint8_t transitions[] = {0b00000001, 0b10010001, 0b10011011, 0b11111011};
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif
|