portapack-mayhem/firmware/application/hw/si5351.hpp

488 lines
13 KiB
C++
Raw Normal View History

2015-07-08 15:39:24 +00:00
/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef __SI5351_H__
#define __SI5351_H__
#include <cstdint>
#include <array>
#include <algorithm>
#include "ch.h"
#include "hal.h"
#include "i2c_pp.hpp"
namespace si5351 {
Upstream merge to make new revision of PortaPack work (#206) * Power: Turn off additional peripheral clock branches. * Update schematic with new symbol table and KiCad standard symbols. Fix up wires. * Schematic: Update power net labels. * Schematic: Update footprint names to match library changes. * Schematic: Update header vendor and part numbers. * Schematic: Specify (arbitrary) value for PDN# net. * Schematic: Remove fourth fiducial. Not standard practice, and was taking up valuable board space. * Schematic: Add reference oscillator -- options for clipped sine or HCMOS output. * Schematic: Update copyright year. * Schematic: Remove CLKOUT to CPLD. It was a half-baked idea. * Schematic: Add (experimental) GPS circuit. Add note about charging circuit. Update date and revision to match PCB. * PCB: Update from schematic change: now revision 20180819. Diff was extensive due to net renumbering... * PCB: Fix GPS courtyard to accommodate crazy solder paste recommendation in integration manual. PCB: Address DRC clearance violation between via and oscillator pad. * PCB: Update copyright on drawing. * Update schematic and PCB date and revision. * gitignore: Sublime Text editor project/workspace files * Power: Power up or power down peripheral clock at appropriate times, so firmware doesn't freeze... * Clocking: Fix incorrect shift for CGU IDIVx_CTRL.PD field. * LPC43xx: Add CGU IDIVx struct/union type. * Power: Switch off unused IDIV dividers. Make note of active IDIVs and their use. * HackRF Mode: Upgrade firmware to 2018.01.1 (API 1.02) * MAX V CPLD: Refactor class to look more like Xilinx CoolRunner II CPLD class. * MAX V CPLD: Add BYPASS, SAMPLE support. Rename enter_isp -> enable, exit_isp -> disable. Use SAMPLE at start of flash process, which somehow addresses the problem where CFM wouldn't load into SRAM (and become the active bitstream) after flashing. * MAX V CPLD: Reverse verify data checking logic to make it a little faster. * CPLD: After reprogramming flash, immediately clamp I/O signals, load to SRAM, and "execute" the new bitstream. * Si5351: Refactor code, make one of the registers more type-safe. Clock Manager: Track selected reference clock source for later use in user interface. * Clock Manager: Add note about PPM only affecting Si5351C PLLA, which always runs from the HackRF 25MHz crystal. It is assumed an external clock does not need adjustment, though I am open to being convinced otherwise... * PPM UI: Show "EXT" when showing PPM adjustment and reference clock is external. * CPLD: Add pins and logic for new PortaPack hardware feature(s). * CPLD: Bitstream to support new hardware features. * Clock Generator: Add a couple more setter methods for ClockControl registers. * Clock Manager: Use shared MCU CLKIN clock control configuration constant. * Clock Manager: Reduce MCU CLKIN driver current. 2mA should be plenty. * Clock Manager: Remove redundant clock generator output enable. * Bootstrap: Remove unnecessary ldscript hack to locate SPIFI mode change code in RAM. * Bootstrap: Get CPU operating at max frequency as soon as possible. Update SPIFI speed comment. Make some more LPC43xx types into unions with uint32_t. * Bootstrap: Explicitly configure IDIVB for SPIFI, despite LPC43xx bootloader setting it. * Clock Manager: Init peripherals before CPLD reconfig. Do the clock generator setup after, so we can check presence of PortaPack reference clock with the help of the latest CPLD bitstream. * Clock Manager: Reverse sense of conditional that determines crystal or non-crystal reference source. This is for an expected upcoming change where multiple external options can be differentiated. * Bootstrap: Consolidate clock configuration, update SPIFI rate comment. * Clock Manager: Use IDIVA for clock source for all peripherals, instead of PLL1. Should make switching easier going forward. Don't use IRC as clock during initial clock manager configuration. Until we switch to GP_CLKIN, we should go flat out... * ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution. * PortaPack IO: Expose method to set reference oscillator enable pin. * Pin configuration: Do SPIFI pin config with other pins, in preparation for eliminating separate bootloader. * Pin configuration: Disable input buffers on pins that are never read. * Revert "ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution." This reverts commit c0e2bb6cc4cc656769323bdbb8ee5a16d2d5bb03. * Remove unused board files. * Add LPC43xx functions. * chibios: Replace code with per-peripheral structs defining clocks, interrupts, and reset bits. * LPC43xx: Add MCPWM peripheral struct. * clock generator: Use recommended PLL reset register value. Datasheet recommends a value. AN619 is quiet on the topic, claims the low nibble is default 0b0000. * GPIO: Tweak masking of SCU function. I don't remember why I thought this was necessary... * HAL: Explicitly turn on timer peripheral clocks used as systicks, during init. * SCU: Add struct to hold pin configuration. * PAL: Add functions to address The Glitch. https://greatscottgadgets.com/2018/02-28-we-fixed-the-glitch/ * PAL/board: New IO initialization code Declare initial state for SCU pin config, GPIOs. Apply initial state during PAL init. Perform VAA slow turn-on to address The Glitch. * Merge M0 and M4 to eliminate need for bootstrap firmware During _early_init, detect if we're running on the M4 or M0. If M4: do M4-specific core initialization, reset peripherals, speed up SPIFI clock, start M0, go to sleep. If M0: do all the other things. * Pins: Miscellaneous SCU configuration tweaks. * Little code clarity improvement. * bootstrap: Remove, not necessary. * Clock Manager: Large re-working to support external references. * Fix merge conflicts
2019-01-11 06:56:21 +00:00
using reg_t = uint8_t;
2015-07-08 15:39:24 +00:00
namespace Register {
enum {
DeviceStatus = 0,
InterruptStatusSticky = 1,
InterruptStatusMask = 2,
OutputEnableControl = 3,
OEBPinEnableControlMask = 9,
PLLInputSource = 15,
CLKControl_Base = 16,
CLKControl0 = 16,
CLKControl1 = 17,
CLKControl2 = 18,
CLKControl3 = 19,
CLKControl4 = 20,
CLKControl5 = 21,
CLKControl6 = 22,
CLKControl7 = 23,
CLK3_0DisableState = 24,
CLK7_4DisableState = 25,
MultisynthNAParameters_Base = 26,
MultisynthNBParameters_Base = 34,
Multisynth0Parameters_Base = 42,
Multisynth1Parameters_Base = 50,
Multisynth2Parameters_Base = 58,
Multisynth3Parameters_Base = 66,
Multisynth4Parameters_Base = 74,
Multisynth5Parameters_Base = 82,
Multisynth6Parameters = 90,
Multisynth7Parameters = 91,
Clock6And7OutputDivider = 92,
SpreadSpectrumParameters_Base = 149,
VCXOParameters_Base = 162,
CLKInitialPhaseOffset_Base = 165,
PLLReset = 177,
CrystalInternalLoadCapacitance = 183,
FanoutEnable = 187,
};
2015-07-08 15:39:24 +00:00
}
namespace DeviceStatus {
using Type = uint8_t;
2015-07-08 15:39:24 +00:00
enum {
REVID_Mask = (0b11 << 0),
2015-07-08 15:39:24 +00:00
LOS_Mask = (1 << 4),
LOS_ValidClockAtCLKIN = (0 << 4),
LOS_LossOfSignalAtCLKIN = (1 << 4),
2015-07-08 15:39:24 +00:00
LOL_A_Mask = (1 << 5),
LOL_A_PLLALocked = (0 << 5),
LOL_A_PLLAUnlocked = (1 << 5),
2015-07-08 15:39:24 +00:00
LOL_B_Mask = (1 << 6),
LOL_B_PLLBLocked = (0 << 6),
LOL_B_PLLBUnlocked = (1 << 6),
2015-07-08 15:39:24 +00:00
SYS_INIT_Mask = (1 << 7),
SYS_INIT_Complete = (0 << 7),
SYS_INIT_Initializing = (1 << 7),
};
} // namespace DeviceStatus
2015-07-08 15:39:24 +00:00
Upstream merge to make new revision of PortaPack work (#206) * Power: Turn off additional peripheral clock branches. * Update schematic with new symbol table and KiCad standard symbols. Fix up wires. * Schematic: Update power net labels. * Schematic: Update footprint names to match library changes. * Schematic: Update header vendor and part numbers. * Schematic: Specify (arbitrary) value for PDN# net. * Schematic: Remove fourth fiducial. Not standard practice, and was taking up valuable board space. * Schematic: Add reference oscillator -- options for clipped sine or HCMOS output. * Schematic: Update copyright year. * Schematic: Remove CLKOUT to CPLD. It was a half-baked idea. * Schematic: Add (experimental) GPS circuit. Add note about charging circuit. Update date and revision to match PCB. * PCB: Update from schematic change: now revision 20180819. Diff was extensive due to net renumbering... * PCB: Fix GPS courtyard to accommodate crazy solder paste recommendation in integration manual. PCB: Address DRC clearance violation between via and oscillator pad. * PCB: Update copyright on drawing. * Update schematic and PCB date and revision. * gitignore: Sublime Text editor project/workspace files * Power: Power up or power down peripheral clock at appropriate times, so firmware doesn't freeze... * Clocking: Fix incorrect shift for CGU IDIVx_CTRL.PD field. * LPC43xx: Add CGU IDIVx struct/union type. * Power: Switch off unused IDIV dividers. Make note of active IDIVs and their use. * HackRF Mode: Upgrade firmware to 2018.01.1 (API 1.02) * MAX V CPLD: Refactor class to look more like Xilinx CoolRunner II CPLD class. * MAX V CPLD: Add BYPASS, SAMPLE support. Rename enter_isp -> enable, exit_isp -> disable. Use SAMPLE at start of flash process, which somehow addresses the problem where CFM wouldn't load into SRAM (and become the active bitstream) after flashing. * MAX V CPLD: Reverse verify data checking logic to make it a little faster. * CPLD: After reprogramming flash, immediately clamp I/O signals, load to SRAM, and "execute" the new bitstream. * Si5351: Refactor code, make one of the registers more type-safe. Clock Manager: Track selected reference clock source for later use in user interface. * Clock Manager: Add note about PPM only affecting Si5351C PLLA, which always runs from the HackRF 25MHz crystal. It is assumed an external clock does not need adjustment, though I am open to being convinced otherwise... * PPM UI: Show "EXT" when showing PPM adjustment and reference clock is external. * CPLD: Add pins and logic for new PortaPack hardware feature(s). * CPLD: Bitstream to support new hardware features. * Clock Generator: Add a couple more setter methods for ClockControl registers. * Clock Manager: Use shared MCU CLKIN clock control configuration constant. * Clock Manager: Reduce MCU CLKIN driver current. 2mA should be plenty. * Clock Manager: Remove redundant clock generator output enable. * Bootstrap: Remove unnecessary ldscript hack to locate SPIFI mode change code in RAM. * Bootstrap: Get CPU operating at max frequency as soon as possible. Update SPIFI speed comment. Make some more LPC43xx types into unions with uint32_t. * Bootstrap: Explicitly configure IDIVB for SPIFI, despite LPC43xx bootloader setting it. * Clock Manager: Init peripherals before CPLD reconfig. Do the clock generator setup after, so we can check presence of PortaPack reference clock with the help of the latest CPLD bitstream. * Clock Manager: Reverse sense of conditional that determines crystal or non-crystal reference source. This is for an expected upcoming change where multiple external options can be differentiated. * Bootstrap: Consolidate clock configuration, update SPIFI rate comment. * Clock Manager: Use IDIVA for clock source for all peripherals, instead of PLL1. Should make switching easier going forward. Don't use IRC as clock during initial clock manager configuration. Until we switch to GP_CLKIN, we should go flat out... * ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution. * PortaPack IO: Expose method to set reference oscillator enable pin. * Pin configuration: Do SPIFI pin config with other pins, in preparation for eliminating separate bootloader. * Pin configuration: Disable input buffers on pins that are never read. * Revert "ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution." This reverts commit c0e2bb6cc4cc656769323bdbb8ee5a16d2d5bb03. * Remove unused board files. * Add LPC43xx functions. * chibios: Replace code with per-peripheral structs defining clocks, interrupts, and reset bits. * LPC43xx: Add MCPWM peripheral struct. * clock generator: Use recommended PLL reset register value. Datasheet recommends a value. AN619 is quiet on the topic, claims the low nibble is default 0b0000. * GPIO: Tweak masking of SCU function. I don't remember why I thought this was necessary... * HAL: Explicitly turn on timer peripheral clocks used as systicks, during init. * SCU: Add struct to hold pin configuration. * PAL: Add functions to address The Glitch. https://greatscottgadgets.com/2018/02-28-we-fixed-the-glitch/ * PAL/board: New IO initialization code Declare initial state for SCU pin config, GPIOs. Apply initial state during PAL init. Perform VAA slow turn-on to address The Glitch. * Merge M0 and M4 to eliminate need for bootstrap firmware During _early_init, detect if we're running on the M4 or M0. If M4: do M4-specific core initialization, reset peripherals, speed up SPIFI clock, start M0, go to sleep. If M0: do all the other things. * Pins: Miscellaneous SCU configuration tweaks. * Little code clarity improvement. * bootstrap: Remove, not necessary. * Clock Manager: Large re-working to support external references. * Fix merge conflicts
2019-01-11 06:56:21 +00:00
struct ClockControl {
enum ClockCurrentDrive {
_2mA = 0b00,
_4mA = 0b01,
_6mA = 0b10,
_8mA = 0b11,
};
enum ClockSource {
Xtal = 0b00,
CLKIN = 0b01,
MS_Group = 0b10,
MS_Self = 0b11,
};
enum ClockInvert {
Normal = 0,
Invert = 1,
};
enum MultiSynthSource {
PLLA = 0,
PLLB = 1,
};
enum MultiSynthMode {
Fractional = 0,
Integer = 1,
};
enum ClockPowerDown {
Power_On = 0,
Power_Off = 1,
};
reg_t CLK_IDRV : 2;
reg_t CLK_SRC : 2;
reg_t CLK_INV : 1;
reg_t MS_SRC : 1;
reg_t MS_INT : 1;
reg_t CLK_PDN : 1;
constexpr ClockControl(
ClockCurrentDrive clk_idrv,
ClockSource clk_src,
ClockInvert clk_inv,
MultiSynthSource ms_src,
MultiSynthMode ms_int,
ClockPowerDown clk_pdn)
: CLK_IDRV(clk_idrv),
CLK_SRC(clk_src),
CLK_INV(clk_inv),
MS_SRC(ms_src),
MS_INT(ms_int),
CLK_PDN(clk_pdn) {
}
ClockControl clk_src(const ClockSource value) const {
auto result = *this;
result.CLK_SRC = value;
return result;
}
ClockControl ms_src(const MultiSynthSource value) const {
auto result = *this;
result.MS_SRC = value;
return result;
}
ClockControl clk_pdn(const ClockPowerDown value) const {
auto result = *this;
result.CLK_PDN = value;
return result;
}
constexpr operator reg_t() {
return *reinterpret_cast<reg_t*>(this);
}
static constexpr ClockControl power_off() {
return {
ClockCurrentDrive::_2mA,
ClockSource::Xtal,
ClockInvert::Normal,
MultiSynthSource::PLLA,
MultiSynthMode::Fractional,
ClockPowerDown::Power_Off,
};
}
Upstream merge to make new revision of PortaPack work (#206) * Power: Turn off additional peripheral clock branches. * Update schematic with new symbol table and KiCad standard symbols. Fix up wires. * Schematic: Update power net labels. * Schematic: Update footprint names to match library changes. * Schematic: Update header vendor and part numbers. * Schematic: Specify (arbitrary) value for PDN# net. * Schematic: Remove fourth fiducial. Not standard practice, and was taking up valuable board space. * Schematic: Add reference oscillator -- options for clipped sine or HCMOS output. * Schematic: Update copyright year. * Schematic: Remove CLKOUT to CPLD. It was a half-baked idea. * Schematic: Add (experimental) GPS circuit. Add note about charging circuit. Update date and revision to match PCB. * PCB: Update from schematic change: now revision 20180819. Diff was extensive due to net renumbering... * PCB: Fix GPS courtyard to accommodate crazy solder paste recommendation in integration manual. PCB: Address DRC clearance violation between via and oscillator pad. * PCB: Update copyright on drawing. * Update schematic and PCB date and revision. * gitignore: Sublime Text editor project/workspace files * Power: Power up or power down peripheral clock at appropriate times, so firmware doesn't freeze... * Clocking: Fix incorrect shift for CGU IDIVx_CTRL.PD field. * LPC43xx: Add CGU IDIVx struct/union type. * Power: Switch off unused IDIV dividers. Make note of active IDIVs and their use. * HackRF Mode: Upgrade firmware to 2018.01.1 (API 1.02) * MAX V CPLD: Refactor class to look more like Xilinx CoolRunner II CPLD class. * MAX V CPLD: Add BYPASS, SAMPLE support. Rename enter_isp -> enable, exit_isp -> disable. Use SAMPLE at start of flash process, which somehow addresses the problem where CFM wouldn't load into SRAM (and become the active bitstream) after flashing. * MAX V CPLD: Reverse verify data checking logic to make it a little faster. * CPLD: After reprogramming flash, immediately clamp I/O signals, load to SRAM, and "execute" the new bitstream. * Si5351: Refactor code, make one of the registers more type-safe. Clock Manager: Track selected reference clock source for later use in user interface. * Clock Manager: Add note about PPM only affecting Si5351C PLLA, which always runs from the HackRF 25MHz crystal. It is assumed an external clock does not need adjustment, though I am open to being convinced otherwise... * PPM UI: Show "EXT" when showing PPM adjustment and reference clock is external. * CPLD: Add pins and logic for new PortaPack hardware feature(s). * CPLD: Bitstream to support new hardware features. * Clock Generator: Add a couple more setter methods for ClockControl registers. * Clock Manager: Use shared MCU CLKIN clock control configuration constant. * Clock Manager: Reduce MCU CLKIN driver current. 2mA should be plenty. * Clock Manager: Remove redundant clock generator output enable. * Bootstrap: Remove unnecessary ldscript hack to locate SPIFI mode change code in RAM. * Bootstrap: Get CPU operating at max frequency as soon as possible. Update SPIFI speed comment. Make some more LPC43xx types into unions with uint32_t. * Bootstrap: Explicitly configure IDIVB for SPIFI, despite LPC43xx bootloader setting it. * Clock Manager: Init peripherals before CPLD reconfig. Do the clock generator setup after, so we can check presence of PortaPack reference clock with the help of the latest CPLD bitstream. * Clock Manager: Reverse sense of conditional that determines crystal or non-crystal reference source. This is for an expected upcoming change where multiple external options can be differentiated. * Bootstrap: Consolidate clock configuration, update SPIFI rate comment. * Clock Manager: Use IDIVA for clock source for all peripherals, instead of PLL1. Should make switching easier going forward. Don't use IRC as clock during initial clock manager configuration. Until we switch to GP_CLKIN, we should go flat out... * ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution. * PortaPack IO: Expose method to set reference oscillator enable pin. * Pin configuration: Do SPIFI pin config with other pins, in preparation for eliminating separate bootloader. * Pin configuration: Disable input buffers on pins that are never read. * Revert "ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution." This reverts commit c0e2bb6cc4cc656769323bdbb8ee5a16d2d5bb03. * Remove unused board files. * Add LPC43xx functions. * chibios: Replace code with per-peripheral structs defining clocks, interrupts, and reset bits. * LPC43xx: Add MCPWM peripheral struct. * clock generator: Use recommended PLL reset register value. Datasheet recommends a value. AN619 is quiet on the topic, claims the low nibble is default 0b0000. * GPIO: Tweak masking of SCU function. I don't remember why I thought this was necessary... * HAL: Explicitly turn on timer peripheral clocks used as systicks, during init. * SCU: Add struct to hold pin configuration. * PAL: Add functions to address The Glitch. https://greatscottgadgets.com/2018/02-28-we-fixed-the-glitch/ * PAL/board: New IO initialization code Declare initial state for SCU pin config, GPIOs. Apply initial state during PAL init. Perform VAA slow turn-on to address The Glitch. * Merge M0 and M4 to eliminate need for bootstrap firmware During _early_init, detect if we're running on the M4 or M0. If M4: do M4-specific core initialization, reset peripherals, speed up SPIFI clock, start M0, go to sleep. If M0: do all the other things. * Pins: Miscellaneous SCU configuration tweaks. * Little code clarity improvement. * bootstrap: Remove, not necessary. * Clock Manager: Large re-working to support external references. * Fix merge conflicts
2019-01-11 06:56:21 +00:00
};
static_assert(sizeof(ClockControl) == 1, "ClockControl size is not eight bits");
using ClockControls = std::array<ClockControl, 8>;
2015-07-08 15:39:24 +00:00
namespace CrystalInternalLoadCapacitance {
using Type = uint8_t;
enum {
XTAL_CL_Mask = (0b11 << 6),
XTAL_CL_6pF = (0b01 << 6),
XTAL_CL_8pF = (0b10 << 6),
XTAL_CL_10pF = (0b11 << 6),
};
} // namespace CrystalInternalLoadCapacitance
2015-07-08 15:39:24 +00:00
namespace PLLInputSource {
using Type = uint8_t;
enum {
PLLA_Source_Mask = (1 << 2),
PLLA_Source_XTAL = (0 << 2),
PLLA_Source_CLKIN = (1 << 2),
PLLB_Source_Mask = (1 << 3),
PLLB_Source_XTAL = (0 << 3),
PLLB_Source_CLKIN = (1 << 3),
CLKIN_Div_Mask = (0b11 << 6),
CLKIN_Div1 = (0b00 << 6),
CLKIN_Div2 = (0b01 << 6),
CLKIN_Div4 = (0b10 << 6),
CLKIN_Div8 = (0b11 << 6),
};
} // namespace PLLInputSource
2015-07-08 15:39:24 +00:00
struct Inputs {
const uint32_t f_xtal;
const uint32_t f_clkin;
const uint32_t clkin_div;
2015-07-08 15:39:24 +00:00
constexpr uint32_t f_clkin_out() const {
return f_clkin / clkin_div;
}
2015-07-08 15:39:24 +00:00
};
using PLLReg = std::array<uint8_t, 9>;
struct PLL {
const uint32_t f_in;
const uint32_t a;
const uint32_t b;
const uint32_t c;
constexpr uint32_t f_vco() const {
return f_in * (a + (float)b / (float)c);
}
constexpr uint32_t p1() const {
return 128 * a + (uint32_t)(128 * (float)b / (float)c) - 512;
}
constexpr uint32_t p2() const {
return 128 * b - c * (uint32_t)(128 * (float)b / (float)c);
}
constexpr uint32_t p3() const {
return c;
}
constexpr PLLReg reg(const uint8_t pll_n) const {
return {
uint8_t(26 + (pll_n * 8)),
uint8_t((p3() >> 8) & 0xff),
uint8_t((p3() >> 0) & 0xff),
uint8_t((p1() >> 16) & 0x03),
uint8_t((p1() >> 8) & 0xff),
uint8_t((p1() >> 0) & 0xff),
uint8_t(
(((p3() >> 16) & 0x0f) << 4) | ((p2() >> 16) & 0x0f)),
uint8_t((p2() >> 8) & 0xff),
uint8_t((p2() >> 0) & 0xff),
};
}
2015-07-08 15:39:24 +00:00
};
using MultisynthFractionalReg = std::array<uint8_t, 9>;
struct MultisynthFractional {
const uint32_t f_src;
const uint32_t a;
const uint32_t b;
const uint32_t c;
const uint32_t r_div;
constexpr uint32_t p1() const {
return 128 * a + (uint32_t)(128 * (float)b / (float)c) - 512;
}
constexpr uint32_t p2() const {
return 128 * b - c * (uint32_t)(128 * (float)b / (float)c);
}
constexpr uint32_t p3() const {
return c;
}
constexpr uint32_t f_out() const {
return f_src / (a + (float)b / (float)c) / (1 << r_div);
}
constexpr MultisynthFractionalReg reg(const uint8_t multisynth_n) const {
return {
uint8_t(42 + (multisynth_n * 8)),
uint8_t((p3() >> 8) & 0xFF),
uint8_t((p3() >> 0) & 0xFF),
uint8_t((r_div << 4) | (0 << 2) | ((p1() >> 16) & 0x3)),
uint8_t((p1() >> 8) & 0xFF),
uint8_t((p1() >> 0) & 0xFF),
uint8_t((((p3() >> 16) & 0xF) << 4) | (((p2() >> 16) & 0xF) << 0)),
uint8_t((p2() >> 8) & 0xFF),
uint8_t((p2() >> 0) & 0xFF)};
}
2015-07-08 15:39:24 +00:00
};
struct MultisynthInteger {
const uint32_t f_src;
const uint32_t a;
const uint32_t r_div;
2015-07-08 15:39:24 +00:00
constexpr uint8_t p1() const {
return a;
}
2015-07-08 15:39:24 +00:00
constexpr uint32_t f_out() const {
return f_src / a / (1 << r_div);
}
2015-07-08 15:39:24 +00:00
};
using Multisynth6And7Reg = std::array<uint8_t, 4>;
constexpr Multisynth6And7Reg ms6_7_reg(
const MultisynthInteger& ms6,
const MultisynthInteger& ms7) {
return {
Register::Multisynth6Parameters,
uint8_t(ms6.p1() & 0xff),
uint8_t(ms7.p1() & 0xff),
uint8_t(((ms7.r_div & 7) << 4) | ((ms6.r_div & 7) << 0)),
};
2015-07-08 15:39:24 +00:00
}
class Si5351 {
public:
using regvalue_t = uint8_t;
constexpr Si5351(I2C& bus, I2C::address_t address)
: _clock_control({ClockControl::power_off(), ClockControl::power_off(),
ClockControl::power_off(), ClockControl::power_off(),
ClockControl::power_off(), ClockControl::power_off(),
ClockControl::power_off(), ClockControl::power_off()}),
_bus(bus),
_address(address),
_output_enable(0x00) {
}
void reset();
uint8_t device_status() {
return read_register(Register::DeviceStatus);
}
void wait_for_device_ready() {
while (device_status() & 0x80)
;
}
bool plla_loss_of_signal() {
return (device_status() >> 5) & 1;
}
bool clkin_loss_of_signal() {
return (device_status() >> 4) & 1;
}
void enable_fanout() {
write_register(Register::FanoutEnable, 0b11010000);
}
void reset_plls() {
// Datasheet recommends value 0xac, though the low nibble bits are not defined in AN619.
write_register(Register::PLLReset, 0xac);
}
regvalue_t read_register(const uint8_t reg);
template <size_t N>
void write(const std::array<uint8_t, N>& values) {
_bus.transmit(_address, values.data(), values.size());
}
void write_register(const uint8_t reg, const regvalue_t value) {
write(std::array<uint8_t, 2>{
reg, value});
}
void write(const size_t ms_number, const MultisynthFractional& config) {
write(config.reg(ms_number));
}
void set_ms_frequency(
const size_t ms_number,
const uint32_t frequency,
const uint32_t vco_frequency,
const size_t r_div);
void set_crystal_internal_load_capacitance(const CrystalInternalLoadCapacitance::Type xtal_cl) {
write_register(Register::CrystalInternalLoadCapacitance, xtal_cl);
}
void set_pll_input_sources(const PLLInputSource::Type value) {
write_register(Register::PLLInputSource, value);
}
void enable_output_mask(const uint8_t mask) {
_output_enable |= mask;
update_output_enable_control();
}
void enable_output(const size_t n) {
enable_output_mask(1 << n);
}
void disable_output_mask(const uint8_t mask) {
_output_enable &= ~mask;
update_output_enable_control();
}
void disable_output(const size_t n) {
disable_output_mask(1 << n);
}
void set_clock_control(const ClockControls& clock_control) {
_clock_control = clock_control;
update_all_clock_control();
}
void set_clock_control(const size_t n, const ClockControl clock_control) {
_clock_control[n] = clock_control;
write_register(Register::CLKControl_Base + n, _clock_control[n]);
}
void enable_clock(const size_t n) {
_clock_control[n].CLK_PDN = ClockControl::ClockPowerDown::Power_On;
write_register(Register::CLKControl_Base + n, _clock_control[n]);
}
void disable_clock(const size_t n) {
_clock_control[n].CLK_PDN = ClockControl::ClockPowerDown::Power_Off;
write_register(Register::CLKControl_Base + n, _clock_control[n]);
}
template <size_t N>
void write_registers(const uint8_t reg, const std::array<uint8_t, N>& values) {
std::array<uint8_t, N + 1> data;
data[0] = reg;
std::copy(values.cbegin(), values.cend(), data.begin() + 1);
write(data);
}
private:
ClockControls _clock_control;
I2C& _bus;
const I2C::address_t _address;
uint8_t _output_enable;
void update_output_enable_control() {
write_register(Register::OutputEnableControl, ~_output_enable);
}
void update_all_clock_control() {
write_registers(Register::CLKControl_Base, std::array<reg_t, 8>{{
_clock_control[0],
_clock_control[1],
_clock_control[2],
_clock_control[3],
_clock_control[4],
_clock_control[5],
_clock_control[6],
_clock_control[7],
}});
}
2015-07-08 15:39:24 +00:00
};
} // namespace si5351
2015-07-08 15:39:24 +00:00
#endif /*__SI5351_H__*/