portapack-mayhem/firmware/baseband/proc_pocsag2.cpp

502 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright (C) 1996 Thomas Sailer (sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu)
* Copyright (C) 2012-2014 Elias Oenal (multimon-ng@eliasoenal.com)
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
* Copyright (C) 2016 Kyle Reed
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_pocsag2.hpp"
#include "event_m4.hpp"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstddef>
using namespace std;
void POCSAGProcessor::execute(const buffer_c8_t& buffer) {
if (!configured) return;
// buffer has 2048 samples
// decim0 out: 2048/8 = 256 samples
// decim1 out: 256/8 = 32 samples
// channel out: 32/2 = 16 samples
// Get 24kHz audio
const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer);
const auto channel_out = channel_filter.execute(decim_1_out, dst_buffer);
auto audio = demod.execute(channel_out, audio_buffer);
// Check if there's any signal in the audio buffer.
bool has_audio = squelch.execute(audio);
squelch_history = (squelch_history << 1) | (has_audio ? 1 : 0);
// Has there been any signal?
if (squelch_history == 0) {
// No signal for a while, flush and reset.
if (!has_been_reset) {
OnDataFrame(m_numCode, getRate());
resetVals();
send_stats();
}
// Clear the audio stream before sending.
for (size_t i = 0; i < audio.count; ++i)
audio.p[i] = 0.0;
audio_output.write(audio);
return;
}
// Filter out high-frequency noise. TODO: compensate gain?
lpf.execute_in_place(audio);
normalizer.execute_in_place(audio);
audio_output.write(audio);
processDemodulatedSamples(audio.p, 16);
extractFrames();
samples_processed += buffer.count;
if (samples_processed >= stat_update_threshold) {
send_stats();
samples_processed = 0;
}
}
void POCSAGProcessor::on_message(const Message* const message) {
switch (message->id) {
case Message::ID::POCSAGConfigure:
configure();
break;
case Message::ID::NBFMConfigure: {
auto config = reinterpret_cast<const NBFMConfigureMessage*>(message);
squelch.set_threshold(config->squelch_level / 99.0);
break;
}
default:
break;
}
}
void POCSAGProcessor::configure() {
constexpr size_t decim_0_output_fs = baseband_fs / decim_0.decimation_factor;
constexpr size_t decim_1_output_fs = decim_0_output_fs / decim_1.decimation_factor;
const size_t channel_filter_output_fs = decim_1_output_fs / 2;
const size_t demod_input_fs = channel_filter_output_fs;
decim_0.configure(taps_11k0_decim_0.taps);
decim_1.configure(taps_11k0_decim_1.taps);
channel_filter.configure(taps_11k0_channel.taps, 2);
demod.configure(demod_input_fs, 4'500); // FSK +/- 4k5Hz.
// Don't process the audio stream.
audio_output.configure(false);
// Set up the frame extraction, limits of baud.
setFrameExtractParams(demod_input_fs, 4000, 300, 32);
// Set ready to process data.
configured = true;
}
void POCSAGProcessor::send_stats() const {
POCSAGStatsMessage message(m_fifo.codeword, m_numCode, m_gotSync);
shared_memory.application_queue.push(message);
}
int POCSAGProcessor::OnDataWord(uint32_t word, int pos) {
packet.set(pos, word);
return 0;
}
int POCSAGProcessor::OnDataFrame(int len, int baud) {
if (len > 0) {
packet.set_bitrate(baud);
packet.set_flag(pocsag::PacketFlag::NORMAL);
packet.set_timestamp(Timestamp::now());
const POCSAGPacketMessage message(packet);
shared_memory.application_queue.push(message);
}
return 0;
}
#define BAUD_STABLE (104)
#define MAX_CONSEC_SAME (32)
#define MAX_WITHOUT_SINGLE (64)
#define MAX_BAD_TRANS (10)
#define M_SYNC (0x7cd215d8)
#define M_NOTSYNC (0x832dea27)
#define M_IDLE (0x7a89c197)
inline int bitsDiff(unsigned long left, unsigned long right) {
unsigned long xord = left ^ right;
int count = 0;
for (int i = 0; i < 32; i++) {
if ((xord & 0x01) != 0) ++count;
xord = xord >> 1;
}
return (count);
}
void POCSAGProcessor::initFrameExtraction() {
m_averageSymbolLen_1024 = m_maxSymSamples_1024;
m_lastStableSymbolLen_1024 = m_minSymSamples_1024;
m_badTransitions = 0;
m_bitsStart = 0;
m_bitsEnd = 0;
m_inverted = false;
resetVals();
}
void POCSAGProcessor::resetVals() {
if (has_been_reset) return;
// Reset the parameters
m_goodTransitions = 0;
m_badTransitions = 0;
m_averageSymbolLen_1024 = m_maxSymSamples_1024;
m_shortestGoodTrans_1024 = m_maxSymSamples_1024;
m_valMid = 0;
// And reset the counts
m_lastTransPos_1024 = 0;
m_lastBitPos_1024 = 0;
m_lastSample = 0;
m_sampleNo = 0;
m_nextBitPos_1024 = m_maxSymSamples_1024;
m_nextBitPosInt = (long)m_nextBitPos_1024;
// Extraction
m_fifo.numBits = 0;
m_fifo.codeword = 0;
m_gotSync = false;
m_numCode = 0;
has_been_reset = true;
samples_processed = 0;
}
void POCSAGProcessor::setFrameExtractParams(long a_samplesPerSec, long a_maxBaud, long a_minBaud, long maxRunOfSameValue) {
m_samplesPerSec = a_samplesPerSec;
m_minSymSamples_1024 = (uint32_t)(1024.0f * (float)a_samplesPerSec / (float)a_maxBaud);
m_maxSymSamples_1024 = (uint32_t)(1024.0f * (float)a_samplesPerSec / (float)a_minBaud);
m_maxRunOfSameValue = maxRunOfSameValue;
m_shortestGoodTrans_1024 = m_maxSymSamples_1024;
m_averageSymbolLen_1024 = m_maxSymSamples_1024;
m_lastStableSymbolLen_1024 = m_minSymSamples_1024;
m_nextBitPos_1024 = m_averageSymbolLen_1024 / 2;
m_nextBitPosInt = m_nextBitPos_1024 >> 10;
initFrameExtraction();
}
int POCSAGProcessor::processDemodulatedSamples(float* sampleBuff, int noOfSamples) {
bool transition = false;
uint32_t samplePos_1024 = 0;
uint32_t len_1024 = 0;
has_been_reset = false;
// Loop through the block of data
// ------------------------------
for (int pos = 0; pos < noOfSamples; ++pos) {
m_sample = sampleBuff[pos];
m_valMid += (m_sample - m_valMid) / 1024.0f;
++m_sampleNo;
// Detect Transition
// -----------------
transition = !((m_lastSample < m_valMid) ^ (m_sample >= m_valMid)); // use XOR for speed
// If this is a transition
// -----------------------
if (transition) {
// Calculate samples since last trans
// ----------------------------------
int32_t fractional_1024 = (int32_t)(((m_sample - m_valMid) * 1024) / (m_sample - m_lastSample));
if (fractional_1024 < 0) {
fractional_1024 = -fractional_1024;
}
samplePos_1024 = (m_sampleNo << 10) - fractional_1024;
len_1024 = samplePos_1024 - m_lastTransPos_1024;
m_lastTransPos_1024 = samplePos_1024;
// If symbol is large enough to be valid
// -------------------------------------
if (len_1024 > m_minSymSamples_1024) {
// Check for shortest good transition
// ----------------------------------
if ((len_1024 < m_shortestGoodTrans_1024) &&
(m_goodTransitions < BAUD_STABLE)) // detect change of symbol size
{
int32_t fractionOfShortest_1024 = (len_1024 << 10) / m_shortestGoodTrans_1024;
// If currently at half the baud rate
// ----------------------------------
if ((fractionOfShortest_1024 > 410) && (fractionOfShortest_1024 < 614)) // 0.4 and 0.6
{
m_averageSymbolLen_1024 /= 2;
m_shortestGoodTrans_1024 = len_1024;
}
// If currently at the wrong baud rate
// -----------------------------------
else if (fractionOfShortest_1024 < 768) // 0.75
{
m_averageSymbolLen_1024 = len_1024;
m_shortestGoodTrans_1024 = len_1024;
m_goodTransitions = 0;
m_lastSingleBitPos_1024 = samplePos_1024 - len_1024;
}
}
// Calc the number of bits since events
// ------------------------------------
int32_t halfSymbol_1024 = m_averageSymbolLen_1024 / 2;
int bitsSinceLastTrans = max((uint32_t)1, (len_1024 + halfSymbol_1024) / m_averageSymbolLen_1024);
int bitsSinceLastSingle = (((m_sampleNo << 10) - m_lastSingleBitPos_1024) + halfSymbol_1024) / m_averageSymbolLen_1024;
// Check for single bit
// --------------------
if (bitsSinceLastTrans == 1) {
m_lastSingleBitPos_1024 = samplePos_1024;
}
// If too long since last transition
// ---------------------------------
if (bitsSinceLastTrans > MAX_CONSEC_SAME) {
resetVals();
}
// If too long sice last single bit
// --------------------------------
else if (bitsSinceLastSingle > MAX_WITHOUT_SINGLE) {
resetVals();
} else {
// If this is a good transition
// ----------------------------
int32_t offsetFromExtectedTransition_1024 = len_1024 - (bitsSinceLastTrans * m_averageSymbolLen_1024);
if (offsetFromExtectedTransition_1024 < 0) {
offsetFromExtectedTransition_1024 = -offsetFromExtectedTransition_1024;
}
if (offsetFromExtectedTransition_1024 < ((int32_t)m_averageSymbolLen_1024 / 4)) // Has to be within 1/4 of symbol to be good
{
++m_goodTransitions;
uint32_t bitsCount = min((uint32_t)BAUD_STABLE, m_goodTransitions);
uint32_t propFromPrevious = m_averageSymbolLen_1024 * bitsCount;
uint32_t propFromCurrent = (len_1024 / bitsSinceLastTrans);
m_averageSymbolLen_1024 = (propFromPrevious + propFromCurrent) / (bitsCount + 1);
m_badTransitions = 0;
// if ( len < m_shortestGoodTrans ){m_shortestGoodTrans = len;}
// Store the old symbol size
if (m_goodTransitions >= BAUD_STABLE) {
m_lastStableSymbolLen_1024 = m_averageSymbolLen_1024;
}
}
}
// Set the point of the last bit if not yet stable
// -----------------------------------------------
if ((m_goodTransitions < BAUD_STABLE) || (m_badTransitions > 0)) {
m_lastBitPos_1024 = samplePos_1024 - (m_averageSymbolLen_1024 / 2);
}
// Calculate the exact positiom of the next bit
// --------------------------------------------
int32_t thisPlusHalfsymbol_1024 = samplePos_1024 + (m_averageSymbolLen_1024 / 2);
int32_t lastPlusSymbol = m_lastBitPos_1024 + m_averageSymbolLen_1024;
m_nextBitPos_1024 = lastPlusSymbol + ((thisPlusHalfsymbol_1024 - lastPlusSymbol) / 16);
// Check for bad pos error
// -----------------------
if (m_nextBitPos_1024 < samplePos_1024) m_nextBitPos_1024 += m_averageSymbolLen_1024;
// Calculate integer sample after next bit
// ---------------------------------------
m_nextBitPosInt = (m_nextBitPos_1024 >> 10) + 1;
} // symbol is large enough to be valid
else {
// Bad transition, so reset the counts
// -----------------------------------
++m_badTransitions;
if (m_badTransitions > MAX_BAD_TRANS) {
resetVals();
}
}
} // end of if transition
// Reached the point of the next bit
// ---------------------------------
if (m_sampleNo >= m_nextBitPosInt) {
// Everything is good so extract a bit
// -----------------------------------
if (m_goodTransitions > 20) {
// Store value at the center of bit
// --------------------------------
storeBit();
}
// Check for long 1 or zero
// ------------------------
uint32_t bitsSinceLastTrans = ((m_sampleNo << 10) - m_lastTransPos_1024) / m_averageSymbolLen_1024;
if (bitsSinceLastTrans > m_maxRunOfSameValue) {
resetVals();
}
// Store the point of the last bit
// -------------------------------
m_lastBitPos_1024 = m_nextBitPos_1024;
// Calculate the exact point of the next bit
// -----------------------------------------
m_nextBitPos_1024 += m_averageSymbolLen_1024;
// Look for the bit after the next bit pos
// ---------------------------------------
m_nextBitPosInt = (m_nextBitPos_1024 >> 10) + 1;
} // Reached the point of the next bit
m_lastSample = m_sample;
} // Loop through the block of data
return getNoOfBits();
}
void POCSAGProcessor::storeBit() {
if (++m_bitsStart >= BIT_BUF_SIZE) {
m_bitsStart = 0;
}
// Calculate the bit value
float sample = (m_sample + m_lastSample) / 2;
// int32_t sample_1024 = m_sample_1024;
bool bit = sample > m_valMid;
// If buffer not full
if (m_bitsStart != m_bitsEnd) {
// Decide on output val
if (bit) {
m_bits[m_bitsStart] = 0;
} else {
m_bits[m_bitsStart] = 1;
}
}
// Throw away bits if the buffer is full
else {
if (--m_bitsStart <= -1) {
m_bitsStart = BIT_BUF_SIZE - 1;
}
}
}
int POCSAGProcessor::extractFrames() {
int msgCnt = 0;
// While there is unread data in the bits buffer
//----------------------------------------------
while (getNoOfBits() > 0) {
m_fifo.codeword = (m_fifo.codeword << 1) + getBit();
m_fifo.numBits++;
// If number of bits in fifo equals 32
//------------------------------------
if (m_fifo.numBits >= 32) {
// Not got sync
// ------------
if (!m_gotSync) {
if (bitsDiff(m_fifo.codeword, M_SYNC) <= 2) {
m_inverted = false;
m_gotSync = true;
m_numCode = -1;
m_fifo.numBits = 0;
} else if (bitsDiff(m_fifo.codeword, M_NOTSYNC) <= 2) {
m_inverted = true;
m_gotSync = true;
m_numCode = -1;
m_fifo.numBits = 0;
} else {
// Cause it to load one more bit
m_fifo.numBits = 31;
}
} // Not got sync
else {
// Increment the word count
// ------------------------
++m_numCode; // It got set to -1 when a sync was found, now count the 16 words
uint32_t val = m_inverted ? ~m_fifo.codeword : m_fifo.codeword;
OnDataWord(val, m_numCode);
// If at the end of a 16 word block
// --------------------------------
if (m_numCode >= 15) {
msgCnt += OnDataFrame(m_numCode + 1, getRate());
m_gotSync = false;
m_numCode = -1;
}
m_fifo.numBits = 0;
}
} // If number of bits in fifo equals 32
} // While there is unread data in the bits buffer
return msgCnt;
} // extractFrames
short POCSAGProcessor::getBit() {
if (m_bitsEnd != m_bitsStart) {
if (++m_bitsEnd >= BIT_BUF_SIZE) {
m_bitsEnd = 0;
}
return m_bits[m_bitsEnd];
} else {
return -1;
}
}
int POCSAGProcessor::getNoOfBits() {
int bits = m_bitsEnd - m_bitsStart;
if (bits < 0) {
bits += BIT_BUF_SIZE;
}
return bits;
}
uint32_t POCSAGProcessor::getRate() {
return ((m_samplesPerSec << 10) + 512) / m_lastStableSymbolLen_1024;
}
int main() {
EventDispatcher event_dispatcher{std::make_unique<POCSAGProcessor>()};
event_dispatcher.run();
return 0;
}