portapack-mayhem/firmware/baseband/fprotos/fprotogeneral.hpp

200 lines
6.2 KiB
C++
Raw Normal View History

#ifndef __FPROTO_GENERAL_H__
#define __FPROTO_GENERAL_H__
// useful methods for both weather and subghzd
#include <stdint.h>
#include <stddef.h>
#define bit_read(value, bit) (((value) >> (bit)) & 0x01)
#define bit_set(value, bit) \
({ \
__typeof__(value) _one = (1); \
(value) |= (_one << (bit)); \
})
#define bit_clear(value, bit) \
({ \
__typeof__(value) _one = (1); \
(value) &= ~(_one << (bit)); \
})
#define bit_write(value, bit, bitvalue) (bitvalue ? bit_set(value, bit) : bit_clear(value, bit))
#define DURATION_DIFF(x, y) (((x) < (y)) ? ((y) - (x)) : ((x) - (y)))
typedef enum {
ManchesterStateStart1 = 0,
ManchesterStateMid1 = 1,
ManchesterStateMid0 = 2,
ManchesterStateStart0 = 3
} ManchesterState;
typedef enum {
ManchesterEventShortLow = 0,
ManchesterEventShortHigh = 2,
ManchesterEventLongLow = 4,
ManchesterEventLongHigh = 6,
ManchesterEventReset = 8
} ManchesterEvent;
class FProtoGeneral {
public:
static bool manchester_advance(
ManchesterState state,
ManchesterEvent event,
ManchesterState* next_state,
bool* data) {
bool result = false;
ManchesterState new_state;
if (event == ManchesterEventReset) {
new_state = ManchesterStateMid1;
} else {
new_state = (ManchesterState)(transitions[state] >> event & 0x3);
if (new_state == state) {
new_state = ManchesterStateMid1;
} else {
if (new_state == ManchesterStateMid0) {
if (data) *data = false;
result = true;
} else if (new_state == ManchesterStateMid1) {
if (data) *data = true;
result = true;
}
}
}
*next_state = new_state;
return result;
}
static uint8_t subghz_protocol_blocks_get_parity(uint64_t key, uint8_t bit_count) {
uint8_t parity = 0;
for (uint8_t i = 0; i < bit_count; i++) {
parity += bit_read(key, i);
}
return parity & 0x01;
}
static uint8_t subghz_protocol_blocks_add_bytes(uint8_t const message[], size_t size) {
uint32_t result = 0;
for (size_t i = 0; i < size; ++i) {
result += message[i];
}
return (uint8_t)result;
}
static uint8_t subghz_protocol_blocks_parity8(uint8_t byte) {
byte ^= byte >> 4;
byte &= 0xf;
return (0x6996 >> byte) & 1;
}
static uint8_t subghz_protocol_blocks_parity_bytes(uint8_t const message[], size_t size) {
uint8_t result = 0;
for (size_t i = 0; i < size; ++i) {
result ^= subghz_protocol_blocks_parity8(message[i]);
}
return result;
}
static uint8_t subghz_protocol_blocks_lfsr_digest8(
uint8_t const message[],
size_t size,
uint8_t gen,
uint8_t key) {
uint8_t sum = 0;
for (size_t byte = 0; byte < size; ++byte) {
uint8_t data = message[byte];
for (int i = 7; i >= 0; --i) {
// XOR key into sum if data bit is set
if ((data >> i) & 1) sum ^= key;
// roll the key right (actually the LSB is dropped here)
// and apply the gen (needs to include the dropped LSB as MSB)
if (key & 1)
key = (key >> 1) ^ gen;
else
key = (key >> 1);
}
}
return sum;
}
static float locale_fahrenheit_to_celsius(float temp_f) {
return (temp_f - 32.f) / 1.8f;
}
static uint8_t subghz_protocol_blocks_crc4(
uint8_t const message[],
size_t size,
uint8_t polynomial,
uint8_t init) {
uint8_t remainder = init << 4; // LSBs are unused
uint8_t poly = polynomial << 4;
uint8_t bit;
while (size--) {
remainder ^= *message++;
for (bit = 0; bit < 8; bit++) {
if (remainder & 0x80) {
remainder = (remainder << 1) ^ poly;
} else {
remainder = (remainder << 1);
}
}
}
return remainder >> 4 & 0x0f; // discard the LSBs
}
static uint8_t subghz_protocol_blocks_lfsr_digest8_reflect(
uint8_t const message[],
size_t size,
uint8_t gen,
uint8_t key) {
uint8_t sum = 0;
// Process message from last byte to first byte (reflected)
for (int byte = size - 1; byte >= 0; --byte) {
uint8_t data = message[byte];
// Process individual bits of each byte (reflected)
for (uint8_t i = 0; i < 8; ++i) {
// XOR key into sum if data bit is set
if ((data >> i) & 1) {
sum ^= key;
}
// roll the key left (actually the LSB is dropped here)
// and apply the gen (needs to include the dropped lsb as MSB)
if (key & 0x80)
key = (key << 1) ^ gen;
else
key = (key << 1);
}
}
return sum;
}
static uint64_t subghz_protocol_blocks_reverse_key(uint64_t key, uint8_t bit_count) {
uint64_t reverse_key = 0;
for (uint8_t i = 0; i < bit_count; i++) {
reverse_key = reverse_key << 1 | bit_read(key, i);
}
return reverse_key;
}
static uint8_t subghz_protocol_blocks_crc8(
uint8_t const message[],
size_t size,
uint8_t polynomial,
uint8_t init) {
uint8_t remainder = init;
for (size_t byte = 0; byte < size; ++byte) {
remainder ^= message[byte];
for (uint8_t bit = 0; bit < 8; ++bit) {
if (remainder & 0x80) {
remainder = (remainder << 1) ^ polynomial;
} else {
remainder = (remainder << 1);
}
}
}
return remainder;
}
private:
static inline const uint8_t transitions[] = {0b00000001, 0b10010001, 0b10011011, 0b11111011};
};
#endif