2017-07-23 07:20:32 -04:00
/*
* Copyright ( C ) 2014 Jared Boone , ShareBrained Technology , Inc .
* Copyright ( C ) 2016 Furrtek
*
* This file is part of PortaPack .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 , or ( at your option )
* any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; see the file COPYING . If not , write to
* the Free Software Foundation , Inc . , 51 Franklin Street ,
* Boston , MA 02110 - 1301 , USA .
*/
# include "adsb.hpp"
2017-07-25 03:30:12 -04:00
# include "sine_table.hpp"
2023-02-28 14:17:57 -05:00
# include "utility.hpp"
2017-07-23 07:20:32 -04:00
# include <math.h>
namespace adsb {
2017-07-25 03:30:12 -04:00
void make_frame_adsb ( ADSBFrame & frame , const uint32_t ICAO_address ) {
2023-05-18 16:16:05 -04:00
frame . clear ( ) ;
frame . push_byte ( ( DF_ADSB < < 3 ) | 5 ) ; // DF=17 and CA
frame . push_byte ( ICAO_address > > 16 ) ;
frame . push_byte ( ICAO_address > > 8 ) ;
frame . push_byte ( ICAO_address & 0xFF ) ;
2017-07-23 07:20:32 -04:00
}
2023-05-18 16:16:05 -04:00
// Civil aircraft ADS-B message type starts with Dowlink Format (DF=17) and frame is 112 bits long.
2023-03-03 17:10:58 -05:00
// All known DF's >=16 are long (112 bits). All known DF's <=15 are short (56 bits).(In this case 112 bits)
2023-05-18 16:16:05 -04:00
// Msg structure consists of five main parts :|DF=17 (5 bits)|CA (3 bits)|ICAO (24 bits)|ME (56 bits)|CRC (24 bits)
2023-03-03 17:10:58 -05:00
// Aircraft identification and category message structure, the ME (56 bits) = TC,5 bits | CA,3 bits | C1,6 bits | C2,6 bits | C3,6 | C4,6 | C5,6 | C6,6 | C7,6 | C8,6
2023-05-18 16:16:05 -04:00
// TC : (1..4) : Aircraft identification Type Code . // TC : 9 to 18: Airbone postion // TC : 19 Airbone velocity .
2023-03-03 17:10:58 -05:00
// In this encode_frame_identification function we are using DF = 17 (112 bits long) and TC=4)
2017-07-25 03:30:12 -04:00
void encode_frame_id ( ADSBFrame & frame , const uint32_t ICAO_address , const std : : string & callsign ) {
2023-05-18 16:16:05 -04:00
std : : string callsign_formatted ( 8 , ' _ ' ) ;
uint64_t callsign_coded = 0 ;
uint32_t c , s ;
char ch ;
make_frame_adsb ( frame , ICAO_address ) ; // Header DF=17 Downlink Format = ADS-B message (frame 112 bits)
frame . push_byte ( TC_IDENT < < 3 ) ; // 5 top bits ME = TC = we use fix 4 , # Type aircraft Identification Category = TC_IDENT = 4,
// Translate and encode callsign
for ( c = 0 ; c < 8 ; c + + ) {
ch = callsign [ c ] ;
for ( s = 0 ; s < 64 ; s + + )
if ( ch = = icao_id_lut [ s ] ) break ;
if ( s = = 64 ) {
ch = ' ' ; // Invalid character
s = 32 ;
}
callsign_coded < < = 6 ;
callsign_coded | = s ;
// callsign[c] = ch;
}
// Insert callsign in frame
for ( c = 0 ; c < 6 ; c + + )
frame . push_byte ( ( callsign_coded > > ( ( 5 - c ) * 8 ) ) & 0xFF ) ;
frame . make_CRC ( ) ;
2017-07-23 07:20:32 -04:00
}
2017-08-16 05:02:57 -04:00
std : : string decode_frame_id ( ADSBFrame & frame ) {
2023-05-18 16:16:05 -04:00
std : : string callsign = " " ;
uint8_t * raw_data = frame . get_raw_data ( ) ;
uint64_t callsign_coded = 0 ;
uint32_t c ;
// Frame bytes to long
for ( c = 5 ; c < 11 ; c + + ) {
callsign_coded < < = 8 ;
callsign_coded | = raw_data [ c ] ;
}
// Long to 6-bit characters
for ( c = 0 ; c < 8 ; c + + ) {
callsign . append ( 1 , icao_id_lut [ ( callsign_coded > > 42 ) & 0x3F ] ) ;
callsign_coded < < = 6 ;
}
return callsign ;
2017-08-16 05:02:57 -04:00
}
2017-07-23 07:20:32 -04:00
/*void generate_frame_emergency(ADSBFrame& frame, const uint32_t ICAO_address, const uint8_t code) {
2023-05-18 16:16:05 -04:00
make_frame_mode_s ( frame , ICAO_address ) ;
frame . push_byte ( ( 28 < < 3 ) + 1 ) ; // TC = 28 (Emergency), subtype = 1 (Emergency)
frame . push_byte ( code < < 5 ) ;
frame . make_CRC ( ) ;
2017-07-23 07:20:32 -04:00
} */
2023-03-03 17:10:58 -05:00
// Mode S services. (Mode Select Beacon System). There are two types of Mode S interrogations: The short (56 bits) . and the long (112 bits )
// All known DF's >=16 are long frame msg (112 bits). All known DF's <=15 are short frame msgs (56 bits).(In this case 112 bits)
// Identity squawk replies can be DF=5 (Surveillance Identity reply)(56 bits) / DF 21 (Comm-B with Identity reply) (112 bits)
// DF 21: Comm-B with identity reply structure = |DF=21(5 bits)|FS (3 bits)|DR (5 bits)|UM (6 bits) |Identity squawk code (13 bits) |MB (56 bits) |CRC (24 bits) (total 112 bits)
// Comm-B messages count for a large portion of the Mode S selective interrogation responses.(means, only transmitted information upon selective request)
2023-05-18 16:16:05 -04:00
// Comm-B messages protocol supports many different types of msg's (up to 255).The three more popular ones are the following ones:
2023-03-03 17:10:58 -05:00
// (a) Mode S ELementary Surveillance (ELS) / (b) Mode S EnHanced Surveillance (EHS) / (c) Meteorological information
// Comm-B Data Selector (BDS) is an 8-bit code that determines which information to be included in the MB fields
void encode_frame_squawk ( ADSBFrame & frame , const uint16_t squawk ) {
2023-05-18 16:16:05 -04:00
uint16_t squawk_coded ;
uint8_t UM_field = 0b111101 , FS = 0b010 , DR = 0b00001 ;
// To be sent those fields, (56 bits). We should store byte by byte into the frame , and It will be transmitted byte to byte same FIFO order.
// DF 5 bits 5 DF=21 (5 top bits) Downlink Format
// FS 3 bits 0b000, FS (3 bottom bits) (Flight status ) = 000 : no alert, no SPI, aircraft is airborne
// DR 5 bits 0b00001 DR (Downlink request) (5 top bits) = 00000 : no downlink request (In surveillance replies, only values 0, 1, 4, and 5 are used.)
// UM 6 bits 0b000010 UM (Utility message)= 000000, Utility message (UM): 6 bits, contains transponder communication status information.(IIS + IDS)
// Identity_code 13 bits squawk id_code in special interleaved format.
// MB 56 bits
// CRC partity 24 bits parity checksum , cyclic redundancy chek.
frame . clear ( ) ;
frame . push_byte ( ( DF_EHS_SQUAWK < < 3 ) | FS ) ; // DF=21 (5bits) + FS (3bits, 010 : alert, NO SPI, aircraft is airborne)
frame . push_byte ( ( DR < < 3 ) | ( UM_field > > 3 ) ) ; // DR (5bits, 00001 : downlink request + 3 top bits of UM , let's use 0b111000
// 12 11 10 9 8 7 6 5 4 3 2 1 0 (Original notes) bit weight position----------------------
// 32 31 30 29 28 27 26 25 24 23 22 21 20 (it was wrong , now corrected) bit order inside frame msg
// D4 B4 D2 B2 D1 B1 __ A4 C4 A2 C2 A1 C1 standard spec order of the 13 bits, to be sent , each octal digit = 3 bits , (example A=7 binary A4 A2 A0 = 111
// ABCD = code (octal, 0000~7777)
// FEDCBA9876543210
// xAAAxBBBxCCCxDDD 4 x 3 bits (each octal digit)
// x421x421x421x421 binary weight of each binary position, example AAA = 7 = 111 -------------------------
// Additional , expanded notes -------------------------------
// Identity squawk code ABCD = code (octal, 0000~7777) , input concatenated squawk : 4 octal digits ,A4 A2 A1-B4 B2 B1-C4 C2 C1-D4 D2 D1.
// 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 bit position of the frame msg, (Squawk id is bit 20-32, from C1..D4).
// UM4 UM2 UM1 C1 A1 C2 A2 C4 A4 X B1 D1 B2 D2 B4 D4 3 lower bit UM4,UM2,UM1 of the UM (6bits), and we should re-order the 13 bits ABCD changing 12 bit poistion based on std.
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Two bytes , bit position to be send.
squawk_coded = ( ( ( UM_field & ( 0b111 ) ) < < 13 ) | ( ( squawk < < 9 ) & 0x1000 ) ) | // C1 It also leaves in the top 3 lower bottom bitd part of UM field.
( ( squawk < < 2 ) & 0x0800 ) | // A1
( ( squawk < < 6 ) & 0x0400 ) | // C2
( ( squawk > > 1 ) & 0x0200 ) | // A2
( ( squawk < < 3 ) & 0x0100 ) | // C4
( ( squawk > > 4 ) & 0x0080 ) | // A4
( ( squawk > > 1 ) & 0x0020 ) | // B1
( ( squawk < < 4 ) & 0x0010 ) | // D1
( ( squawk > > 4 ) & 0x0008 ) | // B2
( ( squawk < < 1 ) & 0x0004 ) | // D2
( ( squawk > > 7 ) & 0x0002 ) | // B4
( ( squawk > > 2 ) & 0x0001 ) ; // D4
frame . push_byte ( squawk_coded > > 8 ) ; // UM4 UM2 UM1 C1 A1 C2 A2 C4 that is the correct order, confirmed with dump1090
frame . push_byte ( squawk_coded ) ; // A4 X(1) B1 D1 B2 D2 B4 D4 that is the correct order, confirmed with dupm1090
// DF 21 messages , has 56 bits more after 13 bits of squawk, we should add MB (56 bits)
// In this example, we are adding fixed MB = Track and turn report (BDS 5,0) decoding MB example = "F9363D3BBF9CE9" (56 bits)
// # -9.7, roll angle (deg)
// # 140.273, track angle (deg)
// # -0.406, track angle rate (deg/s)
// # 476, ground speed (kt)
// # 466, TAS (kt)
frame . push_byte ( 0xF9 ) ;
frame . push_byte ( 0x36 ) ;
frame . push_byte ( 0x3D ) ;
frame . push_byte ( 0x3B ) ; // If we deltele those two lines, to send this fixed MB (56 bits),
frame . push_byte ( 0xBF ) ;
frame . push_byte ( 0x9C ) ;
frame . push_byte ( 0xE9 ) ; // current fw is padding with 56 x 0's to complete 112 bits msg.
frame . make_CRC ( ) ;
}
2017-07-23 07:20:32 -04:00
float cpr_mod ( float a , float b ) {
2023-05-18 16:16:05 -04:00
return a - ( b * floor ( a / b ) ) ;
2017-07-23 07:20:32 -04:00
}
2021-06-19 18:41:06 -04:00
int cpr_NL_precise ( float lat ) {
2023-05-18 16:16:05 -04:00
return ( int ) floor ( 2 * PI / acos ( 1 - ( ( 1 - cos ( PI / ( 2 * NZ ) ) ) / pow ( cos ( PI * lat / 180 ) , 2 ) ) ) ) ;
2021-06-19 18:41:06 -04:00
}
int cpr_NL_approx ( float lat ) {
2023-05-18 16:16:05 -04:00
if ( lat < 0 )
lat = - lat ; // Symmetry
for ( size_t c = 0 ; c < 58 ; c + + ) {
if ( lat < adsb_lat_lut [ c ] )
return 59 - c ;
}
return 1 ;
2021-06-19 18:41:06 -04:00
}
int cpr_NL ( float lat ) {
2023-05-18 16:16:05 -04:00
// TODO prove that the approximate function is good
// enough for the precision we need. Uncomment if
// that is true. No performance penalty was noticed
// from testing, but if you find it might be an issue,
// switch to cpr_NL_approx() instead:
2021-06-23 14:54:34 -04:00
2023-05-18 16:16:05 -04:00
// return cpr_NL_approx(lat);
2021-06-23 14:54:34 -04:00
2023-05-18 16:16:05 -04:00
return cpr_NL_precise ( lat ) ;
2017-07-23 07:20:32 -04:00
}
int cpr_N ( float lat , int is_odd ) {
int nl = cpr_NL ( lat ) - is_odd ;
2023-05-18 16:16:05 -04:00
2017-07-23 07:20:32 -04:00
if ( nl < 1 )
2023-05-18 16:16:05 -04:00
nl = 1 ;
2017-07-23 07:20:32 -04:00
return nl ;
}
2017-08-17 07:56:47 -04:00
float cpr_Dlon ( float lat , int is_odd ) {
return 360.0 / cpr_N ( lat , is_odd ) ;
}
2023-05-18 16:16:05 -04:00
// An ADS-B frame Civil aircraft message type starts with Dowlink Format (DF=17) and frame is 112 bits long.
2023-03-03 17:10:58 -05:00
// All known DF's >=16 are long (112 bits). All known DF's <=15 are short (56 bits). (In this case 112 bits)
2023-05-18 16:16:05 -04:00
// Msg structure consists of five main parts :|DF=17 (5 bits)|CA (3 bits)|ICAO (24 bits)|ME (56 bits)|CRC (24 bits)
2023-03-03 17:10:58 -05:00
// Airborne position msg struct, the ME (56 bits) = |TC,5 bits| SS, 2 bits | SAF, 1 | ALT, 12 | T, 1 | F, 1 | LAT-CPR, 17 | LON-CPR, 17
// TC : (1..4) : Aircraft identification Type Code. // TC : 9 to 18: Airbone postion and altitude // TC : 19 Airbone velocity .
// Airborne position message is used to broadcast the position and altitude of the aircraft. It has the Type Code 9– 18 and 20– 22. (here , we use TC=11)
2023-05-18 16:16:05 -04:00
void encode_frame_pos ( ADSBFrame & frame , const uint32_t ICAO_address , const int32_t altitude , const float latitude , const float longitude , const uint32_t time_parity ) {
uint32_t altitude_coded ;
uint32_t lat , lon ;
float delta_lat , yz , rlat , delta_lon , xz ;
make_frame_adsb ( frame , ICAO_address ) ; // Header DF=17 (long frame 112 bits)
frame . push_byte ( TC_AIRBORNE_POS < < 3 ) ; // Bits 2~1: Surveillance Status, bit 0: NICsb
altitude_coded = ( altitude + 1000 ) / 25 ; // 25ft precision, insert Q-bit (1)
altitude_coded = ( ( altitude_coded & 0x7F0 ) < < 1 ) | 0x10 | ( altitude_coded & 0x0F ) ;
frame . push_byte ( altitude_coded > > 4 ) ; // Top-most altitude bits
// CPR encoding
// Info from: http://antena.fe.uni-lj.si/literatura/Razno/Avionika/modes/CPRencoding.pdf
delta_lat = 360.0 / ( ( 4.0 * NZ ) - time_parity ) ; // NZ = 15
yz = floor ( CPR_MAX_VALUE * ( cpr_mod ( latitude , delta_lat ) / delta_lat ) + 0.5 ) ;
rlat = delta_lat * ( ( yz / CPR_MAX_VALUE ) + floor ( latitude / delta_lat ) ) ;
if ( ( cpr_NL ( rlat ) - time_parity ) > 0 )
delta_lon = 360.0 / cpr_N ( rlat , time_parity ) ;
else
delta_lon = 360.0 ;
xz = floor ( CPR_MAX_VALUE * ( cpr_mod ( longitude , delta_lon ) / delta_lon ) + 0.5 ) ;
lat = cpr_mod ( yz , CPR_MAX_VALUE ) ;
lon = cpr_mod ( xz , CPR_MAX_VALUE ) ;
frame . push_byte ( ( altitude_coded < < 4 ) | ( ( uint32_t ) time_parity < < 2 ) | ( lat > > 15 ) ) ; // T = 0
frame . push_byte ( lat > > 7 ) ;
frame . push_byte ( ( lat < < 1 ) | ( lon > > 16 ) ) ;
frame . push_byte ( lon > > 8 ) ;
frame . push_byte ( lon ) ;
frame . make_CRC ( ) ;
2017-07-23 07:20:32 -04:00
}
2017-08-17 07:56:47 -04:00
// Decoding method from dump1090
adsb_pos decode_frame_pos ( ADSBFrame & frame_even , ADSBFrame & frame_odd ) {
2023-05-18 16:16:05 -04:00
uint8_t * raw_data ;
uint32_t latcprE , latcprO , loncprE , loncprO ;
float latE , latO , m , Dlon , cpr_lon_odd , cpr_lon_even , cpr_lat_odd , cpr_lat_even ;
int ni ;
adsb_pos position { false , 0 , 0 , 0 } ;
uint32_t time_even = frame_even . get_rx_timestamp ( ) ;
uint32_t time_odd = frame_odd . get_rx_timestamp ( ) ;
uint8_t * frame_data_even = frame_even . get_raw_data ( ) ;
uint8_t * frame_data_odd = frame_odd . get_raw_data ( ) ;
// Return most recent altitude
if ( time_even > time_odd )
raw_data = frame_data_even ;
else
raw_data = frame_data_odd ;
// Q-bit must be present
if ( raw_data [ 5 ] & 1 )
position . altitude = ( ( ( ( raw_data [ 5 ] & 0xFE ) < < 3 ) | ( ( raw_data [ 6 ] & 0xF0 ) > > 4 ) ) * 25 ) - 1000 ;
// Position
latcprE = ( ( frame_data_even [ 6 ] & 3 ) < < 15 ) | ( frame_data_even [ 7 ] < < 7 ) | ( frame_data_even [ 8 ] > > 1 ) ;
loncprE = ( ( frame_data_even [ 8 ] & 1 ) < < 16 ) | ( frame_data_even [ 9 ] < < 8 ) | frame_data_even [ 10 ] ;
latcprO = ( ( frame_data_odd [ 6 ] & 3 ) < < 15 ) | ( frame_data_odd [ 7 ] < < 7 ) | ( frame_data_odd [ 8 ] > > 1 ) ;
loncprO = ( ( frame_data_odd [ 8 ] & 1 ) < < 16 ) | ( frame_data_odd [ 9 ] < < 8 ) | frame_data_odd [ 10 ] ;
// Calculate the coefficients
cpr_lon_even = loncprE / CPR_MAX_VALUE ;
cpr_lon_odd = loncprO / CPR_MAX_VALUE ;
cpr_lat_odd = latcprO / CPR_MAX_VALUE ;
cpr_lat_even = latcprE / CPR_MAX_VALUE ;
// Compute latitude index
float j = floor ( ( ( 59.0 * cpr_lat_even ) - ( 60.0 * cpr_lat_odd ) ) + 0.5 ) ;
latE = ( 360.0 / 60.0 ) * ( cpr_mod ( j , 60 ) + cpr_lat_even ) ;
latO = ( 360.0 / 59.0 ) * ( cpr_mod ( j , 59 ) + cpr_lat_odd ) ;
if ( latE > = 270 ) latE - = 360 ;
if ( latO > = 270 ) latO - = 360 ;
// Both frames must be in the same latitude zone
if ( cpr_NL ( latE ) ! = cpr_NL ( latO ) )
return position ;
// Compute longitude
if ( time_even > time_odd ) {
// Use even frame2
ni = cpr_N ( latE , 0 ) ;
Dlon = 360.0 / ni ;
m = floor ( ( cpr_lon_even * ( cpr_NL ( latE ) - 1 ) ) - ( cpr_lon_odd * cpr_NL ( latE ) ) + 0.5 ) ;
position . longitude = Dlon * ( cpr_mod ( m , ni ) + cpr_lon_even ) ;
position . latitude = latE ;
} else {
// Use odd frame
ni = cpr_N ( latO , 1 ) ;
Dlon = 360.0 / ni ;
m = floor ( ( cpr_lon_even * ( cpr_NL ( latO ) - 1 ) ) - ( cpr_lon_odd * cpr_NL ( latO ) ) + 0.5 ) ;
position . longitude = Dlon * ( cpr_mod ( m , ni ) + cpr_lon_odd ) ;
position . latitude = latO ;
}
if ( position . longitude > = 180 ) position . longitude - = 360 ;
position . valid = true ;
return position ;
2017-08-16 05:02:57 -04:00
}
2023-03-03 17:10:58 -05:00
// An ADS-B frame is 112 bits long. Civil aircraft ADS-B message starts with the Downlink Format ,DF=17.
2023-05-18 16:16:05 -04:00
// Msg structure consists of five main parts :|DF=17 (5 bits)|CA (3 bits)|ICAO (24 bits)|ME (56 bits)|CRC (24 bits)
2023-03-03 17:10:58 -05:00
// Airborne velocities are all transmitted with Type Code 19 ( TC=19 ) inside ME (56 bits)
// [units] : speed is in knots, vertical rate climb / descend is in ft/min
2023-05-18 16:16:05 -04:00
void encode_frame_velo ( ADSBFrame & frame , const uint32_t ICAO_address , const uint32_t speed , const float angle , const int32_t v_rate ) {
int32_t velo_ew , velo_ns ;
uint32_t velo_ew_abs , velo_ns_abs , v_rate_coded_abs ;
// To get NS and EW speeds from speed and bearing, a polar to cartesian conversion is enough
velo_ew = static_cast < int32_t > ( sin_f32 ( DEG_TO_RAD ( angle ) ) * speed ) ; // East direction, is the projection from West -> East is directly sin(angle=Compas Bearing) , (90º is the max +1, EAST) max velo_EW
velo_ns = static_cast < int32_t > ( sin_f32 ( ( pi / 2 - DEG_TO_RAD ( angle ) ) ) * speed ) ; // North direction,is the projection of North = cos(angle=Compas Bearing), cos(angle)= sen(90-angle) (0º is the max +1 NORTH) max velo_NS
v_rate_coded_abs = ( abs ( v_rate ) / 64 ) + 1 ; // encoding vertical rate source. (Decoding, VR ft/min = (Decimal v_rate_value - 1)* 64)
velo_ew_abs = abs ( velo_ew ) + 1 ; // encoding Velo speed EW , when sign Direction is 0 (+): West->East, (-) 1: East->West
velo_ns_abs = abs ( velo_ns ) + 1 ; // encoding Velo speed NS , when sign Direction is 0 (+): South->North , (-) 1: North->South
make_frame_adsb ( frame , ICAO_address ) ; // Header DF=17 (long frame 112 bits)
// Airborne velocities are all transmitted with Type Code 19 ( TC=19, using 5 bits ,TC=19 [Binary: 10011]), the following 3 bits are Subt-type Code ,SC= 1,2,3,4
// SC Subtypes code 1 and 2 are used to report ground speeds of aircraft. (SC 3,4 to used to report true airspeed. SC 2,4 are for supersonic aircraft (not used in commercial airline).
frame . push_byte ( ( TC_AIRBORNE_VELO < < 3 ) | 1 ) ; // 1st byte , top 5 bits Type Code TC=19, and lower 3 bits (38-40 bits), SC=001 Subtype Code SC: 1 (subsonic) ,
// Message A, (ME bits from 14-35) , 22 bits = Sign ew(1 bit) + V_ew (10 bits) + Sign_ns (1 bit) + V_ns (10 bits)
// Vertical rate source bit VrSrc (ME bit 36) indicates source of the altitude measurements. GNSS altitude(0) / , barometric altitude(1).
// Vertical rate source direction,(ME bit 37) movement can be read from Svr bit , with 0 and 1 referring to climb and descent, respectively (ft/min)
2023-01-01 17:23:06 -05:00
// The encoded vertical rate value VR can be computed using message (ME bits 38 to 46). If the 9-bit block contains all zeros, the vertical rate information is not available.
2023-05-18 16:16:05 -04:00
// + Sign VrSrc (vert rate src) (1 bit)+ VrSrc (9 bits).
frame . push_byte ( ( ( velo_ew < 0 ? 1 : 0 ) < < 2 ) | ( velo_ew_abs > > 8 ) ) ;
frame . push_byte ( velo_ew_abs ) ;
frame . push_byte ( ( ( velo_ns < 0 ? 1 : 0 ) < < 7 ) | ( velo_ns_abs > > 3 ) ) ;
frame . push_byte ( ( velo_ns_abs < < 5 ) | ( ( v_rate < 0 ? 1 : 0 ) < < 3 ) | ( v_rate_coded_abs > > 6 ) ) ; // VrSrc = 0
frame . push_byte ( v_rate_coded_abs < < 2 ) ;
frame . push_byte ( 0 ) ;
frame . make_CRC ( ) ;
2017-07-25 03:30:12 -04:00
}
2020-07-24 17:09:21 -04:00
// Decoding method from dump1090
2023-05-18 16:16:05 -04:00
adsb_vel decode_frame_velo ( ADSBFrame & frame ) {
adsb_vel velo { false , 0 , 0 , 0 } ;
uint8_t * frame_data = frame . get_raw_data ( ) ;
uint8_t velo_type = frame . get_msg_sub ( ) ;
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
if ( velo_type > = 1 & & velo_type < = 4 ) { // vertical rate is always present
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
velo . v_rate = ( ( ( frame_data [ 8 ] & 0x07 ) < < 6 ) | ( ( frame_data [ 9 ] > > 2 ) - 1 ) ) * 64 ;
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
if ( ( frame_data [ 8 ] & 0x8 ) > > 3 ) velo . v_rate * = - 1 ; // check v_rate sign
}
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
if ( velo_type = = 1 | | velo_type = = 2 ) { // Ground Speed
int32_t raw_ew = ( ( frame_data [ 5 ] & 0x03 ) < < 8 ) | frame_data [ 6 ] ;
int32_t velo_ew = raw_ew - 1 ; // velocities are all offset by one (this is part of the spec)
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
int32_t raw_ns = ( ( frame_data [ 7 ] & 0x7f ) < < 3 ) | ( frame_data [ 8 ] > > 5 ) ;
int32_t velo_ns = raw_ns - 1 ;
2020-08-10 23:55:20 -04:00
2023-05-18 16:16:05 -04:00
if ( velo_type = = 2 ) { // supersonic indicator so multiply by 4
velo_ew = velo_ew < < 2 ;
velo_ns = velo_ns < < 2 ;
}
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
if ( frame_data [ 5 ] & 0x04 ) velo_ew * = - 1 ; // check ew direction sign
if ( frame_data [ 7 ] & 0x80 ) velo_ns * = - 1 ; // check ns direction sign
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
velo . speed = fast_int_magnitude ( velo_ns , velo_ew ) ;
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
if ( velo . speed ) {
// calculate heading in degrees from ew/ns velocities
int16_t heading_temp = ( int16_t ) ( int_atan2 ( velo_ew , velo_ns ) ) ; // Nearest degree
// We don't want negative values but a 0-360 scale.
if ( heading_temp < 0 ) heading_temp + = 360.0 ;
velo . heading = ( uint16_t ) heading_temp ;
}
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
} else if ( velo_type = = 3 | | velo_type = = 4 ) { // Airspeed
velo . valid = frame_data [ 5 ] & ( 1 < < 2 ) ;
velo . heading = ( ( ( ( frame_data [ 5 ] & 0x03 ) < < 8 ) | frame_data [ 6 ] ) * 45 ) < < 7 ;
}
2020-07-24 17:09:21 -04:00
2023-05-18 16:16:05 -04:00
return velo ;
2020-07-24 17:09:21 -04:00
}
2017-07-23 07:20:32 -04:00
} /* namespace adsb */