portapack-mayhem/firmware/baseband/proc_adsbrx.cpp

177 lines
6.0 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2017 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
// https://www.icao.int/SAM/Documents/2015-SEMAUTOM/Ses4%20Presentation%20CUBA_ADSB.pdf
#include "proc_adsbrx.hpp"
#include "portapack_shared_memory.hpp"
#include "sine_table_int8.hpp"
#include "event_m4.hpp"
#include "audio_dma.hpp"
#include <cstdint>
#include <cstddef>
using namespace adsb;
void ADSBRXProcessor::execute(const buffer_c8_t& buffer) {
// This is called at 2M/2048 = 977Hz
// Each sample is 500ns.
// One bit is 2 samples == 1us.
// Bit value is the transition between samples.
// i.e. lo->hi == 0, hi->lo == 1
if (!configured) return;
uint8_t bit = 0;
uint8_t byte = 0;
for (size_t i = 0; i < buffer.count; i++) {
// Compute sample's magnitude.
int8_t re = buffer.p[i].real();
int8_t im = buffer.p[i].imag();
uint16_t mag = (re * re) + (im * im);
if (decoding) {
// 1 bit == 2 samples, transition defines bit value.
if ((sample_count & 1) == 1) {
if (bit_count >= msg_len) {
const ADSBFrameMessage message(frame, amp);
shared_memory.application_queue.push(message);
decoding = false;
bit = (prev_mag > mag) ? 1 : 0;
} else {
bit = (prev_mag > mag) ? 1 : 0;
}
byte = bit | (byte << 1);
bit_count++;
// Every 8th bit...
if ((bit_count & 0x7) == 0) {
// Store the byte.
frame.push_byte(byte);
// Perform additional check on the first byte.
if (bit_count == 8) {
// Abandon all frames that aren't DF17 or DF18 extended squitters.
uint8_t df = (byte >> 3);
if (df != 17 && df != 18) {
decoding = false;
bit = (prev_mag > mag) ? 1 : 0;
frame.clear();
}
}
}
}
sample_count++;
}
// Continue looking for preamble, even if in a packet.
// Switch if new preamble is higher magnitude.
// Shift the preamble.
for (uint8_t c = 0; c < ADSB_PREAMBLE_LENGTH; c++) {
shifter[c] = shifter[c + 1];
}
shifter[ADSB_PREAMBLE_LENGTH] = mag;
// First check of relations between the first 12 samples
// representing a valid preamble. We don't even investigate
// further if this simple test is not passed.
// Preamble is 8us - or 16 samples.
// 0123456789ABCDEF
// _-_-____-_-_____
if (shifter[0] < shifter[1] &&
shifter[1] > shifter[2] &&
shifter[2] < shifter[3] &&
shifter[3] > shifter[4] &&
shifter[4] < shifter[1] &&
shifter[5] < shifter[1] &&
shifter[6] < shifter[1] &&
shifter[7] < shifter[1] &&
shifter[8] > shifter[9] &&
shifter[9] < shifter[10] &&
shifter[10] > shifter[11]) {
// The samples between the two spikes must be < than the average
// of the high spikes level. We don't test bits too near to
// the high levels as signals can be out of phase so part of the
// energy can be in the near samples.
int32_t this_amp = (shifter[1] + shifter[3] + shifter[8] + shifter[10]);
uint32_t high = this_amp / 9; // TBD: Why 9?
if (shifter[5] < high &&
shifter[6] < high &&
// Similarly samples in the range 11-13 must be low, as it is the
// space between the preamble and real data. Again we don't test
// bits too near to high levels, see above.
shifter[12] < high &&
shifter[13] < high &&
shifter[14] < high) {
if ((decoding == false) || // New preamble
((decoding == true) && (this_amp > amp))) // Higher power than existing packet
{
decoding = true;
amp = this_amp;
sample_count = 0;
bit_count = 0;
frame.clear();
}
}
}
// Store mag for next time.
prev_mag = mag;
}
}
void ADSBRXProcessor::on_message(const Message* const message) {
switch (message->id) {
case Message::ID::ADSBConfigure:
bit_count = 0;
sample_count = 0;
decoding = false;
configured = true;
break;
case Message::ID::AudioBeep:
on_beep_message(*reinterpret_cast<const AudioBeepMessage*>(message));
break;
default:
break;
}
}
void ADSBRXProcessor::on_beep_message(const AudioBeepMessage& message) {
audio::dma::beep_start(message.freq, message.sample_rate, message.duration_ms);
}
#ifndef _WIN32
int main() {
audio::dma::init_audio_out();
EventDispatcher event_dispatcher{std::make_unique<ADSBRXProcessor>()};
event_dispatcher.run();
return 0;
}
#endif