monero/tests/unit_tests/curve_trees.cpp
j-berman f47c60ec63 fcmp++ tests: init tree in db once, then copy db for tests
- speeds up trim_tree test by 60%+
2024-09-11 10:13:48 -07:00

1272 lines
56 KiB
C++

// Copyright (c) 2014, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "gtest/gtest.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "curve_trees.h"
#include "fcmp_pp/fcmp_pp_crypto.h"
#include "misc_log_ex.h"
#include "ringct/rctOps.h"
#include "unit_tests_utils.h"
#include <algorithm>
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// CurveTreesGlobalTree helpers
//----------------------------------------------------------------------------------------------------------------------
template<typename C>
static bool validate_layer(const std::unique_ptr<C> &curve,
const CurveTreesGlobalTree::Layer<C> &parents,
const std::vector<typename C::Scalar> &child_scalars,
const std::size_t max_chunk_size)
{
// Hash chunk of children scalars, then see if the hash matches up to respective parent
std::size_t chunk_start_idx = 0;
for (std::size_t i = 0; i < parents.size(); ++i)
{
CHECK_AND_ASSERT_MES(child_scalars.size() > chunk_start_idx, false, "chunk start too high");
const std::size_t chunk_size = std::min(child_scalars.size() - chunk_start_idx, max_chunk_size);
CHECK_AND_ASSERT_MES(child_scalars.size() >= (chunk_start_idx + chunk_size), false, "chunk size too large");
const typename C::Point &parent = parents[i];
const auto chunk_start = child_scalars.data() + chunk_start_idx;
const typename C::Chunk chunk{chunk_start, chunk_size};
for (std::size_t i = 0; i < chunk_size; ++i)
MDEBUG("Hashing " << curve->to_string(chunk_start[i]));
const typename C::Point chunk_hash = fcmp_pp::curve_trees::get_new_parent(curve, chunk);
MDEBUG("chunk_start_idx: " << chunk_start_idx << " , chunk_size: " << chunk_size << " , chunk_hash: " << curve->to_string(chunk_hash));
const auto actual_bytes = curve->to_bytes(parent);
const auto expected_bytes = curve->to_bytes(chunk_hash);
CHECK_AND_ASSERT_MES(actual_bytes == expected_bytes, false, "unexpected hash");
chunk_start_idx += chunk_size;
}
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx == child_scalars.size(), "unexpected ending chunk start idx");
return true;
}
//----------------------------------------------------------------------------------------------------------------------
template<typename C_CHILD, typename C_PARENT>
static std::vector<typename C_PARENT::Scalar> get_last_chunk_children_to_trim(const std::unique_ptr<C_CHILD> &c_child,
const CurveTreesGlobalTree::Layer<C_CHILD> &child_layer,
const bool need_last_chunk_children_to_trim,
const bool need_last_chunk_remaining_children,
const std::size_t start_trim_idx,
const std::size_t end_trim_idx)
{
std::vector<typename C_PARENT::Scalar> children_to_trim_out;
if (end_trim_idx > start_trim_idx)
{
std::size_t idx = start_trim_idx;
MDEBUG("Start trim from idx: " << idx << " , ending trim at: " << end_trim_idx);
do
{
CHECK_AND_ASSERT_THROW_MES(child_layer.size() > idx, "idx too high");
const auto &child_point = child_layer[idx];
auto child_scalar = c_child->point_to_cycle_scalar(child_point);
children_to_trim_out.push_back(std::move(child_scalar));
++idx;
}
while (idx < end_trim_idx);
}
return children_to_trim_out;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// CurveTreesGlobalTree implementations
//----------------------------------------------------------------------------------------------------------------------
std::size_t CurveTreesGlobalTree::get_num_leaf_tuples() const
{
return m_tree.leaves.size();
}
//----------------------------------------------------------------------------------------------------------------------
CurveTreesV1::LastHashes CurveTreesGlobalTree::get_last_hashes() const
{
CurveTreesV1::LastHashes last_hashes_out;
auto &c1_last_hashes_out = last_hashes_out.c1_last_hashes;
auto &c2_last_hashes_out = last_hashes_out.c2_last_hashes;
const auto &c1_layers = m_tree.c1_layers;
const auto &c2_layers = m_tree.c2_layers;
// We started with c2 and then alternated, so c2 is the same size or 1 higher than c1
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
"unexpected number of curve layers");
c1_last_hashes_out.reserve(c1_layers.size());
c2_last_hashes_out.reserve(c2_layers.size());
if (c2_layers.empty())
return last_hashes_out;
// Next parents will be c2
bool use_c2 = true;
// Then get last chunks up until the root
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
while (c1_last_hashes_out.size() < c1_layers.size() || c2_last_hashes_out.size() < c2_layers.size())
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() > c2_idx, "missing c2 layer");
c2_last_hashes_out.push_back(c2_layers[c2_idx].back());
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_layers.size() > c1_idx, "missing c1 layer");
c1_last_hashes_out.push_back(c1_layers[c1_idx].back());
++c1_idx;
}
use_c2 = !use_c2;
}
return last_hashes_out;
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesGlobalTree::extend_tree(const CurveTreesV1::TreeExtension &tree_extension)
{
// Add the leaves
CHECK_AND_ASSERT_THROW_MES(m_tree.leaves.size() == tree_extension.leaves.start_leaf_tuple_idx,
"unexpected leaf start idx");
m_tree.leaves.reserve(m_tree.leaves.size() + tree_extension.leaves.tuples.size());
for (const auto &o : tree_extension.leaves.tuples)
{
auto leaf = m_curve_trees.leaf_tuple(o.output_pair);
m_tree.leaves.emplace_back(CurveTreesV1::LeafTuple{
.O_x = std::move(leaf.O_x),
.I_x = std::move(leaf.I_x),
.C_x = std::move(leaf.C_x)
});
}
// Add the layers
const auto &c2_extensions = tree_extension.c2_layer_extensions;
const auto &c1_extensions = tree_extension.c1_layer_extensions;
CHECK_AND_ASSERT_THROW_MES(!c2_extensions.empty(), "empty c2 extensions");
bool use_c2 = true;
std::size_t c2_idx = 0;
std::size_t c1_idx = 0;
for (std::size_t i = 0; i < (c2_extensions.size() + c1_extensions.size()); ++i)
{
// TODO: template below if statement
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer extension");
const fcmp_pp::curve_trees::LayerExtension<Selene> &c2_ext = c2_extensions[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!c2_ext.hashes.empty(), "empty c2 layer extension");
CHECK_AND_ASSERT_THROW_MES(c2_idx <= m_tree.c2_layers.size(), "missing c2 layer");
if (m_tree.c2_layers.size() == c2_idx)
m_tree.c2_layers.emplace_back(Layer<Selene>{});
auto &c2_inout = m_tree.c2_layers[c2_idx];
const bool started_after_tip = (c2_inout.size() == c2_ext.start_idx);
const bool started_at_tip = (c2_inout.size() == (c2_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c2 layer start");
// We updated the last hash
if (started_at_tip)
{
CHECK_AND_ASSERT_THROW_MES(c2_ext.update_existing_last_hash, "expect to be updating last hash");
c2_inout.back() = c2_ext.hashes.front();
}
else
{
CHECK_AND_ASSERT_THROW_MES(!c2_ext.update_existing_last_hash, "unexpected last hash update");
}
for (std::size_t i = started_at_tip ? 1 : 0; i < c2_ext.hashes.size(); ++i)
c2_inout.emplace_back(c2_ext.hashes[i]);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer extension");
const fcmp_pp::curve_trees::LayerExtension<Helios> &c1_ext = c1_extensions[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!c1_ext.hashes.empty(), "empty c1 layer extension");
CHECK_AND_ASSERT_THROW_MES(c1_idx <= m_tree.c1_layers.size(), "missing c1 layer");
if (m_tree.c1_layers.size() == c1_idx)
m_tree.c1_layers.emplace_back(Layer<Helios>{});
auto &c1_inout = m_tree.c1_layers[c1_idx];
const bool started_after_tip = (c1_inout.size() == c1_ext.start_idx);
const bool started_at_tip = (c1_inout.size() == (c1_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c1 layer start");
// We updated the last hash
if (started_at_tip)
{
CHECK_AND_ASSERT_THROW_MES(c1_ext.update_existing_last_hash, "expect to be updating last hash");
c1_inout.back() = c1_ext.hashes.front();
}
else
{
CHECK_AND_ASSERT_THROW_MES(!c1_ext.update_existing_last_hash, "unexpected last hash update");
}
for (std::size_t i = started_at_tip ? 1 : 0; i < c1_ext.hashes.size(); ++i)
c1_inout.emplace_back(c1_ext.hashes[i]);
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesGlobalTree::reduce_tree(const CurveTreesV1::TreeReduction &tree_reduction)
{
// Trim the leaves
CHECK_AND_ASSERT_THROW_MES(m_tree.leaves.size() > tree_reduction.new_total_leaf_tuples,
"expected fewer new total leaves");
while (m_tree.leaves.size() > tree_reduction.new_total_leaf_tuples)
m_tree.leaves.pop_back();
// Trim the layers
const auto &c2_layer_reductions = tree_reduction.c2_layer_reductions;
const auto &c1_layer_reductions = tree_reduction.c1_layer_reductions;
CHECK_AND_ASSERT_THROW_MES(c2_layer_reductions.size() == c1_layer_reductions.size()
|| c2_layer_reductions.size() == (c1_layer_reductions.size() + 1),
"unexpected mismatch of c2 and c1 layer reductions");
bool use_c2 = true;
std::size_t c2_idx = 0;
std::size_t c1_idx = 0;
for (std::size_t i = 0; i < (c2_layer_reductions.size() + c1_layer_reductions.size()); ++i)
{
// TODO: template below if statement
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layer_reductions.size(), "unexpected c2 layer reduction");
const auto &c2_reduction = c2_layer_reductions[c2_idx];
CHECK_AND_ASSERT_THROW_MES(c2_idx < m_tree.c2_layers.size(), "missing c2 layer");
auto &c2_inout = m_tree.c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(c2_reduction.new_total_parents <= c2_inout.size(),
"unexpected c2 new total parents");
c2_inout.resize(c2_reduction.new_total_parents);
c2_inout.shrink_to_fit();
// We updated the last hash
if (c2_reduction.update_existing_last_hash)
{
c2_inout.back() = c2_reduction.new_last_hash;
}
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layer_reductions.size(), "unexpected c1 layer reduction");
const auto &c1_reduction = c1_layer_reductions[c1_idx];
CHECK_AND_ASSERT_THROW_MES(c1_idx < m_tree.c1_layers.size(), "missing c1 layer");
auto &c1_inout = m_tree.c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(c1_reduction.new_total_parents <= c1_inout.size(),
"unexpected c1 new total parents");
c1_inout.resize(c1_reduction.new_total_parents);
c1_inout.shrink_to_fit();
// We updated the last hash
if (c1_reduction.update_existing_last_hash)
{
c1_inout.back() = c1_reduction.new_last_hash;
}
++c1_idx;
}
use_c2 = !use_c2;
}
// Delete remaining layers
m_tree.c1_layers.resize(c1_layer_reductions.size());
m_tree.c2_layers.resize(c2_layer_reductions.size());
m_tree.c1_layers.shrink_to_fit();
m_tree.c2_layers.shrink_to_fit();
}
//----------------------------------------------------------------------------------------------------------------------
// TODO: template
CurveTreesV1::LastChunkChildrenToTrim CurveTreesGlobalTree::get_all_last_chunk_children_to_trim(
const std::vector<fcmp_pp::curve_trees::TrimLayerInstructions> &trim_instructions)
{
CurveTreesV1::LastChunkChildrenToTrim all_children_to_trim;
if (trim_instructions.empty())
return all_children_to_trim;
// Leaf layer
const auto &trim_leaf_layer_instructions = trim_instructions[0];
std::vector<Selene::Scalar> leaves_to_trim;
// TODO: separate function
if (trim_leaf_layer_instructions.end_trim_idx > trim_leaf_layer_instructions.start_trim_idx)
{
std::size_t idx = trim_leaf_layer_instructions.start_trim_idx;
MDEBUG("Start trim from idx: " << idx);
do
{
CHECK_AND_ASSERT_THROW_MES(idx % CurveTreesV1::LEAF_TUPLE_SIZE == 0, "expected divisble by leaf tuple size");
const std::size_t leaf_tuple_idx = idx / CurveTreesV1::LEAF_TUPLE_SIZE;
CHECK_AND_ASSERT_THROW_MES(m_tree.leaves.size() > leaf_tuple_idx, "leaf_tuple_idx too high");
const auto &leaf_tuple = m_tree.leaves[leaf_tuple_idx];
leaves_to_trim.push_back(leaf_tuple.O_x);
leaves_to_trim.push_back(leaf_tuple.I_x);
leaves_to_trim.push_back(leaf_tuple.C_x);
idx += CurveTreesV1::LEAF_TUPLE_SIZE;
}
while (idx < trim_leaf_layer_instructions.end_trim_idx);
}
all_children_to_trim.c2_children.emplace_back(std::move(leaves_to_trim));
bool parent_is_c2 = false;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 1; i < trim_instructions.size(); ++i)
{
MDEBUG("Getting trim instructions for layer " << i);
const auto &trim_layer_instructions = trim_instructions[i];
const bool need_last_chunk_children_to_trim = trim_layer_instructions.need_last_chunk_children_to_trim;
const bool need_last_chunk_remaining_children = trim_layer_instructions.need_last_chunk_remaining_children;
const std::size_t start_trim_idx = trim_layer_instructions.start_trim_idx;
const std::size_t end_trim_idx = trim_layer_instructions.end_trim_idx;
if (parent_is_c2)
{
CHECK_AND_ASSERT_THROW_MES(m_tree.c1_layers.size() > c1_idx, "c1_idx too high");
auto children_to_trim = get_last_chunk_children_to_trim<Helios, Selene>(
m_curve_trees.m_c1,
m_tree.c1_layers[c1_idx],
need_last_chunk_children_to_trim,
need_last_chunk_remaining_children,
start_trim_idx,
end_trim_idx);
all_children_to_trim.c2_children.emplace_back(std::move(children_to_trim));
++c1_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(m_tree.c2_layers.size() > c2_idx, "c2_idx too high");
auto children_to_trim = get_last_chunk_children_to_trim<Selene, Helios>(
m_curve_trees.m_c2,
m_tree.c2_layers[c2_idx],
need_last_chunk_children_to_trim,
need_last_chunk_remaining_children,
start_trim_idx,
end_trim_idx);
all_children_to_trim.c1_children.emplace_back(std::move(children_to_trim));
++c2_idx;
}
parent_is_c2 = !parent_is_c2;
}
return all_children_to_trim;
}
//----------------------------------------------------------------------------------------------------------------------
CurveTreesV1::LastHashes CurveTreesGlobalTree::get_last_hashes_to_trim(
const std::vector<fcmp_pp::curve_trees::TrimLayerInstructions> &trim_instructions) const
{
CurveTreesV1::LastHashes last_hashes;
if (trim_instructions.empty())
return last_hashes;
bool parent_is_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (const auto &trim_layer_instructions : trim_instructions)
{
const std::size_t new_total_parents = trim_layer_instructions.new_total_parents;
CHECK_AND_ASSERT_THROW_MES(new_total_parents > 0, "no new parents");
if (parent_is_c2)
{
CHECK_AND_ASSERT_THROW_MES(m_tree.c2_layers.size() > c2_idx, "c2_idx too high");
const auto &c2_layer = m_tree.c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(c2_layer.size() >= new_total_parents, "not enough c2 parents");
last_hashes.c2_last_hashes.push_back(c2_layer[new_total_parents - 1]);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(m_tree.c1_layers.size() > c1_idx, "c1_idx too high");
const auto &c1_layer = m_tree.c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(c1_layer.size() >= new_total_parents, "not enough c1 parents");
last_hashes.c1_last_hashes.push_back(c1_layer[new_total_parents - 1]);
++c1_idx;
}
parent_is_c2 = !parent_is_c2;
}
return last_hashes;
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesGlobalTree::trim_tree(const std::size_t trim_n_leaf_tuples)
{
const std::size_t old_n_leaf_tuples = this->get_num_leaf_tuples();
MDEBUG(old_n_leaf_tuples << " leaves in the tree, trimming " << trim_n_leaf_tuples);
// Get trim instructions
const auto trim_instructions = m_curve_trees.get_trim_instructions(old_n_leaf_tuples, trim_n_leaf_tuples);
MDEBUG("Acquired trim instructions for " << trim_instructions.size() << " layers");
// Do initial tree reads
const auto last_chunk_children_to_trim = this->get_all_last_chunk_children_to_trim(trim_instructions);
const auto last_hashes_to_trim = this->get_last_hashes_to_trim(trim_instructions);
// Get the new hashes, wrapped in a simple struct we can use to trim the tree
const auto tree_reduction = m_curve_trees.get_tree_reduction(
trim_instructions,
last_chunk_children_to_trim,
last_hashes_to_trim);
// Use tree reduction to trim tree
this->reduce_tree(tree_reduction);
const std::size_t new_n_leaf_tuples = this->get_num_leaf_tuples();
CHECK_AND_ASSERT_THROW_MES((new_n_leaf_tuples + trim_n_leaf_tuples) == old_n_leaf_tuples,
"unexpected num leaves after trim");
}
//----------------------------------------------------------------------------------------------------------------------
bool CurveTreesGlobalTree::audit_tree(const std::size_t expected_n_leaf_tuples)
{
MDEBUG("Auditing global tree");
auto leaves = m_tree.leaves;
const auto &c1_layers = m_tree.c1_layers;
const auto &c2_layers = m_tree.c2_layers;
CHECK_AND_ASSERT_MES(leaves.size() == expected_n_leaf_tuples, false, "unexpected num leaves");
if (leaves.empty())
{
CHECK_AND_ASSERT_MES(c2_layers.empty() && c1_layers.empty(), false, "expected empty tree");
return true;
}
CHECK_AND_ASSERT_MES(!c2_layers.empty(), false, "must have at least 1 c2 layer in tree");
CHECK_AND_ASSERT_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
false, "unexpected mismatch of c2 and c1 layers");
// Verify root has 1 member in it
const bool c2_is_root = c2_layers.size() > c1_layers.size();
CHECK_AND_ASSERT_MES(c2_is_root ? c2_layers.back().size() == 1 : c1_layers.back().size() == 1, false,
"root must have 1 member in it");
// Iterate from root down to layer above leaves, and check hashes match up correctly
bool parent_is_c2 = c2_is_root;
std::size_t c2_idx = c2_layers.size() - 1;
std::size_t c1_idx = c1_layers.empty() ? 0 : (c1_layers.size() - 1);
for (std::size_t i = 1; i < (c2_layers.size() + c1_layers.size()); ++i)
{
// TODO: implement templated function for below if statement
if (parent_is_c2)
{
MDEBUG("Validating parent c2 layer " << c2_idx << " , child c1 layer " << c1_idx);
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
const Layer<Selene> &parents = c2_layers[c2_idx];
const Layer<Helios> &children = c1_layers[c1_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c2_idx " + std::to_string(c2_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c1_idx " + std::to_string(c1_idx));
std::vector<Selene::Scalar> child_scalars;
fcmp_pp::tower_cycle::extend_scalars_from_cycle_points<Helios, Selene>(m_curve_trees.m_c1,
children,
child_scalars);
const bool valid = validate_layer<Selene>(m_curve_trees.m_c2,
parents,
child_scalars,
m_curve_trees.m_c2_width);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c2_idx " + std::to_string(c2_idx));
--c2_idx;
}
else
{
MDEBUG("Validating parent c1 layer " << c1_idx << " , child c2 layer " << c2_idx);
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
const Layer<Helios> &parents = c1_layers[c1_idx];
const Layer<Selene> &children = c2_layers[c2_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c1_idx " + std::to_string(c1_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c2_idx " + std::to_string(c2_idx));
std::vector<Helios::Scalar> child_scalars;
fcmp_pp::tower_cycle::extend_scalars_from_cycle_points<Selene, Helios>(m_curve_trees.m_c2,
children,
child_scalars);
const bool valid = validate_layer<Helios>(
m_curve_trees.m_c1,
parents,
child_scalars,
m_curve_trees.m_c1_width);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c1_idx " + std::to_string(c1_idx));
--c1_idx;
}
parent_is_c2 = !parent_is_c2;
}
MDEBUG("Validating leaves");
// Now validate leaves
return validate_layer<Selene>(m_curve_trees.m_c2,
c2_layers[0],
m_curve_trees.flatten_leaves(std::move(leaves)),
m_curve_trees.m_leaf_layer_chunk_width);
}
//----------------------------------------------------------------------------------------------------------------------
// Logging helpers
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesGlobalTree::log_last_hashes(const CurveTreesV1::LastHashes &last_hashes)
{
if (!el::Loggers::allowed(el::Level::Debug, "serialization"))
return;
const auto &c1_last_hashes = last_hashes.c1_last_hashes;
const auto &c2_last_hashes = last_hashes.c2_last_hashes;
MDEBUG("Total of " << c1_last_hashes.size() << " Helios layers and " << c2_last_hashes.size() << " Selene layers");
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_last_hashes.size() + c2_last_hashes.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_hashes.size(), "unexpected c2 layer");
const auto &last_hash = c2_last_hashes[c2_idx];
MDEBUG("c2_idx: " << c2_idx << " , last_hash: " << m_curve_trees.m_c2->to_string(last_hash));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_hashes.size(), "unexpected c1 layer");
const auto &last_hash = c1_last_hashes[c1_idx];
MDEBUG("c1_idx: " << c1_idx << " , last_hash: " << m_curve_trees.m_c1->to_string(last_hash));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesGlobalTree::log_tree_extension(const CurveTreesV1::TreeExtension &tree_extension)
{
if (!el::Loggers::allowed(el::Level::Debug, "serialization"))
return;
const auto &c1_extensions = tree_extension.c1_layer_extensions;
const auto &c2_extensions = tree_extension.c2_layer_extensions;
MDEBUG("Tree extension has " << tree_extension.leaves.tuples.size() << " leaves, "
<< c1_extensions.size() << " helios layers, " << c2_extensions.size() << " selene layers");
MDEBUG("Leaf start idx: " << tree_extension.leaves.start_leaf_tuple_idx);
for (std::size_t i = 0; i < tree_extension.leaves.tuples.size(); ++i)
{
const auto &output_pair = tree_extension.leaves.tuples[i].output_pair;
const auto leaf = m_curve_trees.leaf_tuple(output_pair);
const auto O_x = m_curve_trees.m_c2->to_string(leaf.O_x);
const auto I_x = m_curve_trees.m_c2->to_string(leaf.I_x);
const auto C_x = m_curve_trees.m_c2->to_string(leaf.C_x);
MDEBUG("Leaf tuple idx " << (tree_extension.leaves.start_leaf_tuple_idx + (i * CurveTreesV1::LEAF_TUPLE_SIZE))
<< " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_extensions.size() + c2_extensions.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer");
const fcmp_pp::curve_trees::LayerExtension<Selene> &c2_layer = c2_extensions[c2_idx];
MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx);
for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j)
MDEBUG("Child chunk start idx: " << (j + c2_layer.start_idx) << " , hash: "
<< m_curve_trees.m_c2->to_string(c2_layer.hashes[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer");
const fcmp_pp::curve_trees::LayerExtension<Helios> &c1_layer = c1_extensions[c1_idx];
MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx);
for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j)
MDEBUG("Child chunk start idx: " << (j + c1_layer.start_idx) << " , hash: "
<< m_curve_trees.m_c1->to_string(c1_layer.hashes[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesGlobalTree::log_tree()
{
if (!el::Loggers::allowed(el::Level::Debug, "serialization"))
return;
MDEBUG("Tree has " << m_tree.leaves.size() << " leaves, "
<< m_tree.c1_layers.size() << " helios layers, " << m_tree.c2_layers.size() << " selene layers");
for (std::size_t i = 0; i < m_tree.leaves.size(); ++i)
{
const auto &leaf = m_tree.leaves[i];
const auto O_x = m_curve_trees.m_c2->to_string(leaf.O_x);
const auto I_x = m_curve_trees.m_c2->to_string(leaf.I_x);
const auto C_x = m_curve_trees.m_c2->to_string(leaf.C_x);
MDEBUG("Leaf idx " << i << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (m_tree.c1_layers.size() + m_tree.c2_layers.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < m_tree.c2_layers.size(), "unexpected c2 layer");
const CurveTreesGlobalTree::Layer<Selene> &c2_layer = m_tree.c2_layers[c2_idx];
MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c2_layer.size(); ++j)
MDEBUG("Child chunk start idx: " << j << " , hash: " << m_curve_trees.m_c2->to_string(c2_layer[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < m_tree.c1_layers.size(), "unexpected c1 layer");
const CurveTreesGlobalTree::Layer<Helios> &c1_layer = m_tree.c1_layers[c1_idx];
MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c1_layer.size(); ++j)
MDEBUG("Child chunk start idx: " << j << " , hash: " << m_curve_trees.m_c1->to_string(c1_layer[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// Test helpers
//----------------------------------------------------------------------------------------------------------------------
static const std::vector<fcmp_pp::curve_trees::OutputContext> generate_random_leaves(const CurveTreesV1 &curve_trees,
const std::size_t old_n_leaf_tuples,
const std::size_t new_n_leaf_tuples)
{
std::vector<fcmp_pp::curve_trees::OutputContext> outs;
outs.reserve(new_n_leaf_tuples);
for (std::size_t i = 0; i < new_n_leaf_tuples; ++i)
{
const std::uint64_t output_id = old_n_leaf_tuples + i;
// Generate random output tuple
crypto::secret_key o,c;
crypto::public_key O,C;
crypto::generate_keys(O, o, o, false);
crypto::generate_keys(C, c, c, false);
rct::key C_key = rct::pk2rct(C);
auto output_pair = fcmp_pp::curve_trees::OutputPair{
.output_pubkey = std::move(O),
.commitment = std::move(C_key)
};
auto output_context = fcmp_pp::curve_trees::OutputContext{
.output_id = output_id,
.output_pair = std::move(output_pair)
};
outs.emplace_back(std::move(output_context));
}
return outs;
}
//----------------------------------------------------------------------------------------------------------------------
static const Selene::Scalar generate_random_selene_scalar()
{
crypto::secret_key s;
crypto::public_key S;
crypto::generate_keys(S, s, s, false);
rct::key S_x;
CHECK_AND_ASSERT_THROW_MES(fcmp_pp::point_to_wei_x(rct::pk2rct(S), S_x), "failed to convert to wei x");
return fcmp_pp::tower_cycle::selene_scalar_from_bytes(S_x);
}
//----------------------------------------------------------------------------------------------------------------------
static bool grow_tree_in_memory(CurveTreesV1 &curve_trees,
CurveTreesGlobalTree &global_tree,
const std::size_t expected_old_n_leaf_tuples,
const std::size_t new_n_leaf_tuples)
{
// Do initial tree reads
const std::size_t old_n_leaf_tuples = global_tree.get_num_leaf_tuples();
CHECK_AND_ASSERT_MES(old_n_leaf_tuples == expected_old_n_leaf_tuples, false, "unexpected old_n_leaf_tuples");
const CurveTreesV1::LastHashes last_hashes = global_tree.get_last_hashes();
global_tree.log_last_hashes(last_hashes);
auto new_outputs = generate_random_leaves(curve_trees, old_n_leaf_tuples, new_n_leaf_tuples);
// Get a tree extension object to the existing tree using randomly generated leaves
// - The tree extension includes all elements we'll need to add to the existing tree when adding the new leaves
const auto tree_extension = curve_trees.get_tree_extension(old_n_leaf_tuples,
last_hashes,
std::move(new_outputs));
global_tree.log_tree_extension(tree_extension);
// Use the tree extension to extend the existing tree
global_tree.extend_tree(tree_extension);
global_tree.log_tree();
// Validate tree structure and all hashes
const std::size_t expected_n_leaf_tuples = old_n_leaf_tuples + new_n_leaf_tuples;
return global_tree.audit_tree(expected_n_leaf_tuples);
}
//----------------------------------------------------------------------------------------------------------------------
static bool trim_tree_in_memory(const std::size_t expected_old_n_leaf_tuples,
const std::size_t trim_n_leaf_tuples,
CurveTreesGlobalTree &global_tree)
{
const std::size_t old_n_leaf_tuples = global_tree.get_num_leaf_tuples();
CHECK_AND_ASSERT_MES(old_n_leaf_tuples == expected_old_n_leaf_tuples, false, "unexpected old_n_leaf_tuples");
CHECK_AND_ASSERT_THROW_MES(old_n_leaf_tuples >= trim_n_leaf_tuples, "cannot trim more leaves than exist");
CHECK_AND_ASSERT_THROW_MES(trim_n_leaf_tuples > 0, "must be trimming some leaves");
// Trim the global tree by `trim_n_leaf_tuples`
LOG_PRINT_L1("Trimming " << trim_n_leaf_tuples << " leaf tuples from tree with "
<< old_n_leaf_tuples << " leaves in memory");
global_tree.trim_tree(trim_n_leaf_tuples);
MDEBUG("Finished trimming " << trim_n_leaf_tuples << " leaf tuples from tree");
global_tree.log_tree();
const std::size_t expected_n_leaf_tuples = old_n_leaf_tuples - trim_n_leaf_tuples;
bool res = global_tree.audit_tree(expected_n_leaf_tuples);
CHECK_AND_ASSERT_MES(res, false, "failed to trim tree in memory");
MDEBUG("Successfully trimmed " << trim_n_leaf_tuples << " leaves in memory");
return true;
}
//----------------------------------------------------------------------------------------------------------------------
static bool grow_tree_db(const std::size_t expected_old_n_leaf_tuples,
const std::size_t n_leaves,
std::shared_ptr<CurveTreesV1> curve_trees,
unit_test::BlockchainLMDBTest &test_db)
{
cryptonote::db_wtxn_guard guard(test_db.m_db);
CHECK_AND_ASSERT_MES(test_db.m_db->get_num_leaf_tuples() == (uint64_t)(expected_old_n_leaf_tuples),
false, "unexpected starting n leaf tuples in db");
auto leaves = generate_random_leaves(*curve_trees, 0, n_leaves);
test_db.m_db->grow_tree(std::move(leaves));
return test_db.m_db->audit_tree(expected_old_n_leaf_tuples + n_leaves);
}
//----------------------------------------------------------------------------------------------------------------------
static bool trim_tree_db(const std::size_t expected_old_n_leaf_tuples,
const std::size_t trim_leaves,
unit_test::BlockchainLMDBTest &test_db)
{
cryptonote::db_wtxn_guard guard(test_db.m_db);
CHECK_AND_ASSERT_THROW_MES(expected_old_n_leaf_tuples >= trim_leaves, "cannot trim more leaves than exist");
CHECK_AND_ASSERT_THROW_MES(trim_leaves > 0, "must be trimming some leaves");
LOG_PRINT_L1("Trimming " << trim_leaves << " leaf tuples from tree with "
<< expected_old_n_leaf_tuples << " leaves in db");
CHECK_AND_ASSERT_MES(test_db.m_db->get_num_leaf_tuples() == (uint64_t)(expected_old_n_leaf_tuples),
false, "trimming unexpected starting n leaf tuples in db");
// Can use 0 for trim_block_id since it's unused in tests
test_db.m_db->trim_tree(trim_leaves, 0);
CHECK_AND_ASSERT_MES(test_db.m_db->audit_tree(expected_old_n_leaf_tuples - trim_leaves), false,
"failed to trim tree in db");
MDEBUG("Successfully trimmed tree in db by " << trim_leaves << " leaves");
return true;
}
//----------------------------------------------------------------------------------------------------------------------
#define INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth) \
static_assert(helios_chunk_width > 1, "helios width must be > 1"); \
static_assert(selene_chunk_width > 1, "selene width must be > 1"); \
const auto curve_trees = fcmp_pp::curve_trees::curve_trees_v1(helios_chunk_width, selene_chunk_width); \
\
/* Number of leaves required for tree to reach given depth */ \
std::size_t min_leaves_needed_for_tree_depth = selene_chunk_width; \
for (std::size_t i = 1; i < tree_depth; ++i) \
{ \
const std::size_t width = i % 2 == 0 ? selene_chunk_width : helios_chunk_width; \
min_leaves_needed_for_tree_depth *= width; \
} \
\
/* Increment to test for off-by-1 */ \
++min_leaves_needed_for_tree_depth; \
\
unit_test::BlockchainLMDBTest test_db; \
//----------------------------------------------------------------------------------------------------------------------
#define BEGIN_INIT_TREE_ITER(curve_trees) \
for (std::size_t init_leaves = 1; init_leaves <= min_leaves_needed_for_tree_depth; ++init_leaves) \
{ \
LOG_PRINT_L1("Initializing tree with " << init_leaves << " leaves"); \
\
/* Init tree in memory */ \
CurveTreesGlobalTree global_tree(*curve_trees); \
ASSERT_TRUE(grow_tree_in_memory(*curve_trees, global_tree, 0, init_leaves)); \
\
/* Init tree in db */ \
INIT_BLOCKCHAIN_LMDB_TEST_DB(test_db, curve_trees); \
ASSERT_TRUE(grow_tree_db(0, init_leaves, curve_trees, test_db)); \
//----------------------------------------------------------------------------------------------------------------------
#define END_INIT_TREE_ITER(curve_trees) \
}; \
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// Test
//----------------------------------------------------------------------------------------------------------------------
TEST(curve_trees, grow_tree)
{
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
static const std::size_t helios_chunk_width = 3;
static const std::size_t selene_chunk_width = 2;
static const std::size_t tree_depth = 4;
LOG_PRINT_L1("Test grow tree with helios chunk width " << helios_chunk_width
<< ", selene chunk width " << selene_chunk_width << ", tree depth " << tree_depth);
INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth);
// First initialize the tree with init_leaves
BEGIN_INIT_TREE_ITER(curve_trees)
// Then extend the tree with ext_leaves
for (std::size_t ext_leaves = 1; (init_leaves + ext_leaves) <= min_leaves_needed_for_tree_depth; ++ext_leaves)
{
// Tree in memory
// Copy the already existing global tree
CurveTreesGlobalTree tree_copy(global_tree);
ASSERT_TRUE(grow_tree_in_memory(*curve_trees, tree_copy, init_leaves, ext_leaves));
// Tree in db
// Copy the already existing db
unit_test::BlockchainLMDBTest copy_db = *test_db.copy_db(curve_trees);
INIT_BLOCKCHAIN_LMDB_TEST_DB(copy_db, nullptr);
ASSERT_TRUE(grow_tree_db(init_leaves, ext_leaves, curve_trees, copy_db));
}
END_INIT_TREE_ITER()
}
//----------------------------------------------------------------------------------------------------------------------
TEST(curve_trees, trim_tree)
{
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
static const std::size_t helios_chunk_width = 3;
static const std::size_t selene_chunk_width = 3;
static const std::size_t tree_depth = 4;
LOG_PRINT_L1("Test trim tree with helios chunk width " << helios_chunk_width
<< ", selene chunk width " << selene_chunk_width << ", tree depth " << tree_depth);
INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth);
// First initialize the tree with init_leaves
BEGIN_INIT_TREE_ITER(curve_trees)
// Then trim by trim_leaves
for (std::size_t trim_leaves = 1; trim_leaves <= min_leaves_needed_for_tree_depth; ++trim_leaves)
{
if (trim_leaves > init_leaves)
continue;
// Tree in memory
// Copy the already existing global tree
CurveTreesGlobalTree tree_copy(global_tree);
ASSERT_TRUE(trim_tree_in_memory(init_leaves, trim_leaves, tree_copy));
// Tree in db
// Copy the already existing db
unit_test::BlockchainLMDBTest copy_db = *test_db.copy_db(curve_trees);
INIT_BLOCKCHAIN_LMDB_TEST_DB(copy_db, nullptr);
ASSERT_TRUE(trim_tree_db(init_leaves, trim_leaves, copy_db));
}
END_INIT_TREE_ITER()
}
//----------------------------------------------------------------------------------------------------------------------
TEST(curve_trees, trim_tree_then_grow)
{
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
static const std::size_t helios_chunk_width = 3;
static const std::size_t selene_chunk_width = 3;
static const std::size_t tree_depth = 2;
static const std::size_t grow_after_trim = 1;
LOG_PRINT_L1("Test trim tree with helios chunk width " << helios_chunk_width
<< ", selene chunk width " << selene_chunk_width << ", tree depth " << tree_depth
<< ", then grow " << grow_after_trim << " leaf/leaves");
INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth);
// First initialize the tree with init_leaves
BEGIN_INIT_TREE_ITER(curve_trees)
// Then trim by trim_leaves
for (std::size_t trim_leaves = 1; trim_leaves <= min_leaves_needed_for_tree_depth; ++trim_leaves)
{
if (trim_leaves > init_leaves)
continue;
// Tree in memory
// Copy the already existing global tree
CurveTreesGlobalTree tree_copy(global_tree);
ASSERT_TRUE(trim_tree_in_memory(init_leaves, trim_leaves, tree_copy));
ASSERT_TRUE(grow_tree_in_memory(*curve_trees, tree_copy, init_leaves - trim_leaves, grow_after_trim));
// Tree in db
// Copy the already existing db
unit_test::BlockchainLMDBTest copy_db = *test_db.copy_db(curve_trees);
INIT_BLOCKCHAIN_LMDB_TEST_DB(copy_db, nullptr);
ASSERT_TRUE(trim_tree_db(init_leaves, trim_leaves, copy_db));
ASSERT_TRUE(grow_tree_db(init_leaves - trim_leaves, grow_after_trim, curve_trees, copy_db));
}
END_INIT_TREE_ITER()
}
//----------------------------------------------------------------------------------------------------------------------
// Make sure the result of hash_trim is the same as the equivalent hash_grow excluding the trimmed children
TEST(curve_trees, hash_trim)
{
const auto curve_trees = fcmp_pp::curve_trees::curve_trees_v1();
// 1. Trim 1
{
// Start by hashing: {selene_scalar_0, selene_scalar_1}
// Then trim to: {selene_scalar_0}
const auto selene_scalar_0 = generate_random_selene_scalar();
const auto selene_scalar_1 = generate_random_selene_scalar();
// Get the initial hash of the 2 scalars
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1};
const auto init_hash = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
// Trim selene_scalar_1
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 1};
const auto trim_res = curve_trees->m_c2->hash_trim(
init_hash,
1,
trimmed_children,
curve_trees->m_c2->zero_scalar());
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
// Now compare to calling hash_grow{selene_scalar_0}
std::vector<Selene::Scalar> remaining_children{selene_scalar_0};
const auto grow_res = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
}
// 2. Trim 2
{
// Start by hashing: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
// Then trim to: {selene_scalar_0}
const auto selene_scalar_0 = generate_random_selene_scalar();
const auto selene_scalar_1 = generate_random_selene_scalar();
const auto selene_scalar_2 = generate_random_selene_scalar();
// Get the initial hash of the 3 selene scalars
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1, selene_scalar_2};
const auto init_hash = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
// Trim the initial result by 2 children
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 2};
const auto trim_res = curve_trees->m_c2->hash_trim(
init_hash,
1,
trimmed_children,
curve_trees->m_c2->zero_scalar());
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
// Now compare to calling hash_grow{selene_scalar_0}
std::vector<Selene::Scalar> remaining_children{selene_scalar_0};
const auto grow_res = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
}
// 3. Change 1
{
// Start by hashing: {selene_scalar_0, selene_scalar_1}
// Then change to: {selene_scalar_0, selene_scalar_2}
const auto selene_scalar_0 = generate_random_selene_scalar();
const auto selene_scalar_1 = generate_random_selene_scalar();
// Get the initial hash of the 2 selene scalars
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1};
const auto init_hash = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
const auto selene_scalar_2 = generate_random_selene_scalar();
// Trim the 2nd child and grow with new child
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 1};
const auto trim_res = curve_trees->m_c2->hash_trim(
init_hash,
1,
trimmed_children,
selene_scalar_2);
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_2}
std::vector<Selene::Scalar> remaining_children{selene_scalar_0, selene_scalar_2};
const auto grow_res = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
}
// 4. Trim 2 and grow back by 1
{
// Start by hashing: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
// Then trim+grow to: {selene_scalar_0, selene_scalar_3}
const auto selene_scalar_0 = generate_random_selene_scalar();
const auto selene_scalar_1 = generate_random_selene_scalar();
const auto selene_scalar_2 = generate_random_selene_scalar();
// Get the initial hash of the 3 selene scalars
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1, selene_scalar_2};
const auto init_hash = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
const auto selene_scalar_3 = generate_random_selene_scalar();
// Trim the initial result by 2 children+grow by 1
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 2};
const auto trim_res = curve_trees->m_c2->hash_trim(
init_hash,
1,
trimmed_children,
selene_scalar_3);
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_3}
std::vector<Selene::Scalar> remaining_children{selene_scalar_0, selene_scalar_3};
const auto grow_res = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
}
}
//----------------------------------------------------------------------------------------------------------------------
TEST(curve_trees, hash_grow)
{
const auto curve_trees = fcmp_pp::curve_trees::curve_trees_v1();
// Start by hashing: {selene_scalar_0, selene_scalar_1}
// Then grow 1: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
// Then grow 1: {selene_scalar_0, selene_scalar_1, selene_scalar_2, selene_scalar_3}
const auto selene_scalar_0 = generate_random_selene_scalar();
const auto selene_scalar_1 = generate_random_selene_scalar();
// Get the initial hash of the 2 selene scalars
std::vector<Selene::Scalar> all_children{selene_scalar_0, selene_scalar_1};
const auto init_hash = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{all_children.data(), all_children.size()});
// Extend with a new child
const auto selene_scalar_2 = generate_random_selene_scalar();
std::vector<Selene::Scalar> new_children{selene_scalar_2};
const auto ext_hash = curve_trees->m_c2->hash_grow(
init_hash,
all_children.size(),
curve_trees->m_c2->zero_scalar(),
Selene::Chunk{new_children.data(), new_children.size()});
const auto ext_hash_bytes = curve_trees->m_c2->to_bytes(ext_hash);
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_1, selene_scalar_2}
all_children.push_back(selene_scalar_2);
const auto grow_res = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{all_children.data(), all_children.size()});
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
ASSERT_EQ(ext_hash_bytes, grow_res_bytes);
// Extend again with a new child
const auto selene_scalar_3 = generate_random_selene_scalar();
new_children.clear();
new_children = {selene_scalar_3};
const auto ext_hash2 = curve_trees->m_c2->hash_grow(
ext_hash,
all_children.size(),
curve_trees->m_c2->zero_scalar(),
Selene::Chunk{new_children.data(), new_children.size()});
const auto ext_hash_bytes2 = curve_trees->m_c2->to_bytes(ext_hash2);
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_1, selene_scalar_2, selene_scalar_3}
all_children.push_back(selene_scalar_3);
const auto grow_res2 = curve_trees->m_c2->hash_grow(
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
/*offset*/ 0,
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
/*children*/ Selene::Chunk{all_children.data(), all_children.size()});
const auto grow_res_bytes2 = curve_trees->m_c2->to_bytes(grow_res2);
ASSERT_EQ(ext_hash_bytes2, grow_res_bytes2);
}