mirror of
https://github.com/monero-project/monero.git
synced 2025-01-24 01:41:05 -05:00
f47c60ec63
- speeds up trim_tree test by 60%+
1272 lines
56 KiB
C++
1272 lines
56 KiB
C++
// Copyright (c) 2014, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "cryptonote_basic/cryptonote_format_utils.h"
|
|
#include "curve_trees.h"
|
|
#include "fcmp_pp/fcmp_pp_crypto.h"
|
|
#include "misc_log_ex.h"
|
|
#include "ringct/rctOps.h"
|
|
#include "unit_tests_utils.h"
|
|
|
|
#include <algorithm>
|
|
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// CurveTreesGlobalTree helpers
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
template<typename C>
|
|
static bool validate_layer(const std::unique_ptr<C> &curve,
|
|
const CurveTreesGlobalTree::Layer<C> &parents,
|
|
const std::vector<typename C::Scalar> &child_scalars,
|
|
const std::size_t max_chunk_size)
|
|
{
|
|
// Hash chunk of children scalars, then see if the hash matches up to respective parent
|
|
std::size_t chunk_start_idx = 0;
|
|
for (std::size_t i = 0; i < parents.size(); ++i)
|
|
{
|
|
CHECK_AND_ASSERT_MES(child_scalars.size() > chunk_start_idx, false, "chunk start too high");
|
|
const std::size_t chunk_size = std::min(child_scalars.size() - chunk_start_idx, max_chunk_size);
|
|
CHECK_AND_ASSERT_MES(child_scalars.size() >= (chunk_start_idx + chunk_size), false, "chunk size too large");
|
|
|
|
const typename C::Point &parent = parents[i];
|
|
|
|
const auto chunk_start = child_scalars.data() + chunk_start_idx;
|
|
const typename C::Chunk chunk{chunk_start, chunk_size};
|
|
|
|
for (std::size_t i = 0; i < chunk_size; ++i)
|
|
MDEBUG("Hashing " << curve->to_string(chunk_start[i]));
|
|
|
|
const typename C::Point chunk_hash = fcmp_pp::curve_trees::get_new_parent(curve, chunk);
|
|
|
|
MDEBUG("chunk_start_idx: " << chunk_start_idx << " , chunk_size: " << chunk_size << " , chunk_hash: " << curve->to_string(chunk_hash));
|
|
|
|
const auto actual_bytes = curve->to_bytes(parent);
|
|
const auto expected_bytes = curve->to_bytes(chunk_hash);
|
|
CHECK_AND_ASSERT_MES(actual_bytes == expected_bytes, false, "unexpected hash");
|
|
|
|
chunk_start_idx += chunk_size;
|
|
}
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx == child_scalars.size(), "unexpected ending chunk start idx");
|
|
|
|
return true;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
template<typename C_CHILD, typename C_PARENT>
|
|
static std::vector<typename C_PARENT::Scalar> get_last_chunk_children_to_trim(const std::unique_ptr<C_CHILD> &c_child,
|
|
const CurveTreesGlobalTree::Layer<C_CHILD> &child_layer,
|
|
const bool need_last_chunk_children_to_trim,
|
|
const bool need_last_chunk_remaining_children,
|
|
const std::size_t start_trim_idx,
|
|
const std::size_t end_trim_idx)
|
|
{
|
|
std::vector<typename C_PARENT::Scalar> children_to_trim_out;
|
|
if (end_trim_idx > start_trim_idx)
|
|
{
|
|
std::size_t idx = start_trim_idx;
|
|
MDEBUG("Start trim from idx: " << idx << " , ending trim at: " << end_trim_idx);
|
|
do
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(child_layer.size() > idx, "idx too high");
|
|
const auto &child_point = child_layer[idx];
|
|
|
|
auto child_scalar = c_child->point_to_cycle_scalar(child_point);
|
|
children_to_trim_out.push_back(std::move(child_scalar));
|
|
|
|
++idx;
|
|
}
|
|
while (idx < end_trim_idx);
|
|
}
|
|
|
|
return children_to_trim_out;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// CurveTreesGlobalTree implementations
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
std::size_t CurveTreesGlobalTree::get_num_leaf_tuples() const
|
|
{
|
|
return m_tree.leaves.size();
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
CurveTreesV1::LastHashes CurveTreesGlobalTree::get_last_hashes() const
|
|
{
|
|
CurveTreesV1::LastHashes last_hashes_out;
|
|
auto &c1_last_hashes_out = last_hashes_out.c1_last_hashes;
|
|
auto &c2_last_hashes_out = last_hashes_out.c2_last_hashes;
|
|
|
|
const auto &c1_layers = m_tree.c1_layers;
|
|
const auto &c2_layers = m_tree.c2_layers;
|
|
|
|
// We started with c2 and then alternated, so c2 is the same size or 1 higher than c1
|
|
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
|
|
"unexpected number of curve layers");
|
|
|
|
c1_last_hashes_out.reserve(c1_layers.size());
|
|
c2_last_hashes_out.reserve(c2_layers.size());
|
|
|
|
if (c2_layers.empty())
|
|
return last_hashes_out;
|
|
|
|
// Next parents will be c2
|
|
bool use_c2 = true;
|
|
|
|
// Then get last chunks up until the root
|
|
std::size_t c1_idx = 0;
|
|
std::size_t c2_idx = 0;
|
|
while (c1_last_hashes_out.size() < c1_layers.size() || c2_last_hashes_out.size() < c2_layers.size())
|
|
{
|
|
if (use_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() > c2_idx, "missing c2 layer");
|
|
c2_last_hashes_out.push_back(c2_layers[c2_idx].back());
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_layers.size() > c1_idx, "missing c1 layer");
|
|
c1_last_hashes_out.push_back(c1_layers[c1_idx].back());
|
|
++c1_idx;
|
|
}
|
|
|
|
use_c2 = !use_c2;
|
|
}
|
|
|
|
return last_hashes_out;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
void CurveTreesGlobalTree::extend_tree(const CurveTreesV1::TreeExtension &tree_extension)
|
|
{
|
|
// Add the leaves
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.leaves.size() == tree_extension.leaves.start_leaf_tuple_idx,
|
|
"unexpected leaf start idx");
|
|
|
|
m_tree.leaves.reserve(m_tree.leaves.size() + tree_extension.leaves.tuples.size());
|
|
for (const auto &o : tree_extension.leaves.tuples)
|
|
{
|
|
auto leaf = m_curve_trees.leaf_tuple(o.output_pair);
|
|
|
|
m_tree.leaves.emplace_back(CurveTreesV1::LeafTuple{
|
|
.O_x = std::move(leaf.O_x),
|
|
.I_x = std::move(leaf.I_x),
|
|
.C_x = std::move(leaf.C_x)
|
|
});
|
|
}
|
|
|
|
// Add the layers
|
|
const auto &c2_extensions = tree_extension.c2_layer_extensions;
|
|
const auto &c1_extensions = tree_extension.c1_layer_extensions;
|
|
CHECK_AND_ASSERT_THROW_MES(!c2_extensions.empty(), "empty c2 extensions");
|
|
|
|
bool use_c2 = true;
|
|
std::size_t c2_idx = 0;
|
|
std::size_t c1_idx = 0;
|
|
for (std::size_t i = 0; i < (c2_extensions.size() + c1_extensions.size()); ++i)
|
|
{
|
|
// TODO: template below if statement
|
|
if (use_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer extension");
|
|
const fcmp_pp::curve_trees::LayerExtension<Selene> &c2_ext = c2_extensions[c2_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(!c2_ext.hashes.empty(), "empty c2 layer extension");
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx <= m_tree.c2_layers.size(), "missing c2 layer");
|
|
if (m_tree.c2_layers.size() == c2_idx)
|
|
m_tree.c2_layers.emplace_back(Layer<Selene>{});
|
|
|
|
auto &c2_inout = m_tree.c2_layers[c2_idx];
|
|
|
|
const bool started_after_tip = (c2_inout.size() == c2_ext.start_idx);
|
|
const bool started_at_tip = (c2_inout.size() == (c2_ext.start_idx + 1));
|
|
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c2 layer start");
|
|
|
|
// We updated the last hash
|
|
if (started_at_tip)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_ext.update_existing_last_hash, "expect to be updating last hash");
|
|
c2_inout.back() = c2_ext.hashes.front();
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(!c2_ext.update_existing_last_hash, "unexpected last hash update");
|
|
}
|
|
|
|
for (std::size_t i = started_at_tip ? 1 : 0; i < c2_ext.hashes.size(); ++i)
|
|
c2_inout.emplace_back(c2_ext.hashes[i]);
|
|
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer extension");
|
|
const fcmp_pp::curve_trees::LayerExtension<Helios> &c1_ext = c1_extensions[c1_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(!c1_ext.hashes.empty(), "empty c1 layer extension");
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx <= m_tree.c1_layers.size(), "missing c1 layer");
|
|
if (m_tree.c1_layers.size() == c1_idx)
|
|
m_tree.c1_layers.emplace_back(Layer<Helios>{});
|
|
|
|
auto &c1_inout = m_tree.c1_layers[c1_idx];
|
|
|
|
const bool started_after_tip = (c1_inout.size() == c1_ext.start_idx);
|
|
const bool started_at_tip = (c1_inout.size() == (c1_ext.start_idx + 1));
|
|
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c1 layer start");
|
|
|
|
// We updated the last hash
|
|
if (started_at_tip)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_ext.update_existing_last_hash, "expect to be updating last hash");
|
|
c1_inout.back() = c1_ext.hashes.front();
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(!c1_ext.update_existing_last_hash, "unexpected last hash update");
|
|
}
|
|
|
|
for (std::size_t i = started_at_tip ? 1 : 0; i < c1_ext.hashes.size(); ++i)
|
|
c1_inout.emplace_back(c1_ext.hashes[i]);
|
|
|
|
++c1_idx;
|
|
}
|
|
|
|
use_c2 = !use_c2;
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
void CurveTreesGlobalTree::reduce_tree(const CurveTreesV1::TreeReduction &tree_reduction)
|
|
{
|
|
// Trim the leaves
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.leaves.size() > tree_reduction.new_total_leaf_tuples,
|
|
"expected fewer new total leaves");
|
|
while (m_tree.leaves.size() > tree_reduction.new_total_leaf_tuples)
|
|
m_tree.leaves.pop_back();
|
|
|
|
// Trim the layers
|
|
const auto &c2_layer_reductions = tree_reduction.c2_layer_reductions;
|
|
const auto &c1_layer_reductions = tree_reduction.c1_layer_reductions;
|
|
CHECK_AND_ASSERT_THROW_MES(c2_layer_reductions.size() == c1_layer_reductions.size()
|
|
|| c2_layer_reductions.size() == (c1_layer_reductions.size() + 1),
|
|
"unexpected mismatch of c2 and c1 layer reductions");
|
|
|
|
bool use_c2 = true;
|
|
std::size_t c2_idx = 0;
|
|
std::size_t c1_idx = 0;
|
|
for (std::size_t i = 0; i < (c2_layer_reductions.size() + c1_layer_reductions.size()); ++i)
|
|
{
|
|
// TODO: template below if statement
|
|
if (use_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layer_reductions.size(), "unexpected c2 layer reduction");
|
|
const auto &c2_reduction = c2_layer_reductions[c2_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < m_tree.c2_layers.size(), "missing c2 layer");
|
|
auto &c2_inout = m_tree.c2_layers[c2_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c2_reduction.new_total_parents <= c2_inout.size(),
|
|
"unexpected c2 new total parents");
|
|
|
|
c2_inout.resize(c2_reduction.new_total_parents);
|
|
c2_inout.shrink_to_fit();
|
|
|
|
// We updated the last hash
|
|
if (c2_reduction.update_existing_last_hash)
|
|
{
|
|
c2_inout.back() = c2_reduction.new_last_hash;
|
|
}
|
|
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layer_reductions.size(), "unexpected c1 layer reduction");
|
|
const auto &c1_reduction = c1_layer_reductions[c1_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < m_tree.c1_layers.size(), "missing c1 layer");
|
|
auto &c1_inout = m_tree.c1_layers[c1_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c1_reduction.new_total_parents <= c1_inout.size(),
|
|
"unexpected c1 new total parents");
|
|
|
|
c1_inout.resize(c1_reduction.new_total_parents);
|
|
c1_inout.shrink_to_fit();
|
|
|
|
// We updated the last hash
|
|
if (c1_reduction.update_existing_last_hash)
|
|
{
|
|
c1_inout.back() = c1_reduction.new_last_hash;
|
|
}
|
|
|
|
++c1_idx;
|
|
}
|
|
|
|
use_c2 = !use_c2;
|
|
}
|
|
|
|
// Delete remaining layers
|
|
m_tree.c1_layers.resize(c1_layer_reductions.size());
|
|
m_tree.c2_layers.resize(c2_layer_reductions.size());
|
|
|
|
m_tree.c1_layers.shrink_to_fit();
|
|
m_tree.c2_layers.shrink_to_fit();
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// TODO: template
|
|
CurveTreesV1::LastChunkChildrenToTrim CurveTreesGlobalTree::get_all_last_chunk_children_to_trim(
|
|
const std::vector<fcmp_pp::curve_trees::TrimLayerInstructions> &trim_instructions)
|
|
{
|
|
CurveTreesV1::LastChunkChildrenToTrim all_children_to_trim;
|
|
|
|
if (trim_instructions.empty())
|
|
return all_children_to_trim;
|
|
|
|
// Leaf layer
|
|
const auto &trim_leaf_layer_instructions = trim_instructions[0];
|
|
|
|
std::vector<Selene::Scalar> leaves_to_trim;
|
|
|
|
// TODO: separate function
|
|
if (trim_leaf_layer_instructions.end_trim_idx > trim_leaf_layer_instructions.start_trim_idx)
|
|
{
|
|
std::size_t idx = trim_leaf_layer_instructions.start_trim_idx;
|
|
MDEBUG("Start trim from idx: " << idx);
|
|
do
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(idx % CurveTreesV1::LEAF_TUPLE_SIZE == 0, "expected divisble by leaf tuple size");
|
|
const std::size_t leaf_tuple_idx = idx / CurveTreesV1::LEAF_TUPLE_SIZE;
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.leaves.size() > leaf_tuple_idx, "leaf_tuple_idx too high");
|
|
const auto &leaf_tuple = m_tree.leaves[leaf_tuple_idx];
|
|
|
|
leaves_to_trim.push_back(leaf_tuple.O_x);
|
|
leaves_to_trim.push_back(leaf_tuple.I_x);
|
|
leaves_to_trim.push_back(leaf_tuple.C_x);
|
|
|
|
idx += CurveTreesV1::LEAF_TUPLE_SIZE;
|
|
}
|
|
while (idx < trim_leaf_layer_instructions.end_trim_idx);
|
|
}
|
|
|
|
all_children_to_trim.c2_children.emplace_back(std::move(leaves_to_trim));
|
|
|
|
bool parent_is_c2 = false;
|
|
std::size_t c1_idx = 0;
|
|
std::size_t c2_idx = 0;
|
|
for (std::size_t i = 1; i < trim_instructions.size(); ++i)
|
|
{
|
|
MDEBUG("Getting trim instructions for layer " << i);
|
|
|
|
const auto &trim_layer_instructions = trim_instructions[i];
|
|
|
|
const bool need_last_chunk_children_to_trim = trim_layer_instructions.need_last_chunk_children_to_trim;
|
|
const bool need_last_chunk_remaining_children = trim_layer_instructions.need_last_chunk_remaining_children;
|
|
const std::size_t start_trim_idx = trim_layer_instructions.start_trim_idx;
|
|
const std::size_t end_trim_idx = trim_layer_instructions.end_trim_idx;
|
|
|
|
if (parent_is_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.c1_layers.size() > c1_idx, "c1_idx too high");
|
|
|
|
auto children_to_trim = get_last_chunk_children_to_trim<Helios, Selene>(
|
|
m_curve_trees.m_c1,
|
|
m_tree.c1_layers[c1_idx],
|
|
need_last_chunk_children_to_trim,
|
|
need_last_chunk_remaining_children,
|
|
start_trim_idx,
|
|
end_trim_idx);
|
|
|
|
all_children_to_trim.c2_children.emplace_back(std::move(children_to_trim));
|
|
++c1_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.c2_layers.size() > c2_idx, "c2_idx too high");
|
|
|
|
auto children_to_trim = get_last_chunk_children_to_trim<Selene, Helios>(
|
|
m_curve_trees.m_c2,
|
|
m_tree.c2_layers[c2_idx],
|
|
need_last_chunk_children_to_trim,
|
|
need_last_chunk_remaining_children,
|
|
start_trim_idx,
|
|
end_trim_idx);
|
|
|
|
all_children_to_trim.c1_children.emplace_back(std::move(children_to_trim));
|
|
++c2_idx;
|
|
}
|
|
|
|
parent_is_c2 = !parent_is_c2;
|
|
}
|
|
|
|
return all_children_to_trim;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
CurveTreesV1::LastHashes CurveTreesGlobalTree::get_last_hashes_to_trim(
|
|
const std::vector<fcmp_pp::curve_trees::TrimLayerInstructions> &trim_instructions) const
|
|
{
|
|
CurveTreesV1::LastHashes last_hashes;
|
|
|
|
if (trim_instructions.empty())
|
|
return last_hashes;
|
|
|
|
bool parent_is_c2 = true;
|
|
std::size_t c1_idx = 0;
|
|
std::size_t c2_idx = 0;
|
|
for (const auto &trim_layer_instructions : trim_instructions)
|
|
{
|
|
const std::size_t new_total_parents = trim_layer_instructions.new_total_parents;
|
|
CHECK_AND_ASSERT_THROW_MES(new_total_parents > 0, "no new parents");
|
|
|
|
if (parent_is_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.c2_layers.size() > c2_idx, "c2_idx too high");
|
|
const auto &c2_layer = m_tree.c2_layers[c2_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c2_layer.size() >= new_total_parents, "not enough c2 parents");
|
|
|
|
last_hashes.c2_last_hashes.push_back(c2_layer[new_total_parents - 1]);
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(m_tree.c1_layers.size() > c1_idx, "c1_idx too high");
|
|
const auto &c1_layer = m_tree.c1_layers[c1_idx];
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c1_layer.size() >= new_total_parents, "not enough c1 parents");
|
|
|
|
last_hashes.c1_last_hashes.push_back(c1_layer[new_total_parents - 1]);
|
|
++c1_idx;
|
|
}
|
|
|
|
parent_is_c2 = !parent_is_c2;
|
|
}
|
|
|
|
return last_hashes;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
void CurveTreesGlobalTree::trim_tree(const std::size_t trim_n_leaf_tuples)
|
|
{
|
|
const std::size_t old_n_leaf_tuples = this->get_num_leaf_tuples();
|
|
MDEBUG(old_n_leaf_tuples << " leaves in the tree, trimming " << trim_n_leaf_tuples);
|
|
|
|
// Get trim instructions
|
|
const auto trim_instructions = m_curve_trees.get_trim_instructions(old_n_leaf_tuples, trim_n_leaf_tuples);
|
|
MDEBUG("Acquired trim instructions for " << trim_instructions.size() << " layers");
|
|
|
|
// Do initial tree reads
|
|
const auto last_chunk_children_to_trim = this->get_all_last_chunk_children_to_trim(trim_instructions);
|
|
const auto last_hashes_to_trim = this->get_last_hashes_to_trim(trim_instructions);
|
|
|
|
// Get the new hashes, wrapped in a simple struct we can use to trim the tree
|
|
const auto tree_reduction = m_curve_trees.get_tree_reduction(
|
|
trim_instructions,
|
|
last_chunk_children_to_trim,
|
|
last_hashes_to_trim);
|
|
|
|
// Use tree reduction to trim tree
|
|
this->reduce_tree(tree_reduction);
|
|
|
|
const std::size_t new_n_leaf_tuples = this->get_num_leaf_tuples();
|
|
CHECK_AND_ASSERT_THROW_MES((new_n_leaf_tuples + trim_n_leaf_tuples) == old_n_leaf_tuples,
|
|
"unexpected num leaves after trim");
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
bool CurveTreesGlobalTree::audit_tree(const std::size_t expected_n_leaf_tuples)
|
|
{
|
|
MDEBUG("Auditing global tree");
|
|
|
|
auto leaves = m_tree.leaves;
|
|
const auto &c1_layers = m_tree.c1_layers;
|
|
const auto &c2_layers = m_tree.c2_layers;
|
|
|
|
CHECK_AND_ASSERT_MES(leaves.size() == expected_n_leaf_tuples, false, "unexpected num leaves");
|
|
|
|
if (leaves.empty())
|
|
{
|
|
CHECK_AND_ASSERT_MES(c2_layers.empty() && c1_layers.empty(), false, "expected empty tree");
|
|
return true;
|
|
}
|
|
|
|
CHECK_AND_ASSERT_MES(!c2_layers.empty(), false, "must have at least 1 c2 layer in tree");
|
|
CHECK_AND_ASSERT_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
|
|
false, "unexpected mismatch of c2 and c1 layers");
|
|
|
|
// Verify root has 1 member in it
|
|
const bool c2_is_root = c2_layers.size() > c1_layers.size();
|
|
CHECK_AND_ASSERT_MES(c2_is_root ? c2_layers.back().size() == 1 : c1_layers.back().size() == 1, false,
|
|
"root must have 1 member in it");
|
|
|
|
// Iterate from root down to layer above leaves, and check hashes match up correctly
|
|
bool parent_is_c2 = c2_is_root;
|
|
std::size_t c2_idx = c2_layers.size() - 1;
|
|
std::size_t c1_idx = c1_layers.empty() ? 0 : (c1_layers.size() - 1);
|
|
for (std::size_t i = 1; i < (c2_layers.size() + c1_layers.size()); ++i)
|
|
{
|
|
// TODO: implement templated function for below if statement
|
|
if (parent_is_c2)
|
|
{
|
|
MDEBUG("Validating parent c2 layer " << c2_idx << " , child c1 layer " << c1_idx);
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
|
|
|
|
const Layer<Selene> &parents = c2_layers[c2_idx];
|
|
const Layer<Helios> &children = c1_layers[c1_idx];
|
|
|
|
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c2_idx " + std::to_string(c2_idx));
|
|
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c1_idx " + std::to_string(c1_idx));
|
|
|
|
std::vector<Selene::Scalar> child_scalars;
|
|
fcmp_pp::tower_cycle::extend_scalars_from_cycle_points<Helios, Selene>(m_curve_trees.m_c1,
|
|
children,
|
|
child_scalars);
|
|
|
|
const bool valid = validate_layer<Selene>(m_curve_trees.m_c2,
|
|
parents,
|
|
child_scalars,
|
|
m_curve_trees.m_c2_width);
|
|
|
|
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c2_idx " + std::to_string(c2_idx));
|
|
|
|
--c2_idx;
|
|
}
|
|
else
|
|
{
|
|
MDEBUG("Validating parent c1 layer " << c1_idx << " , child c2 layer " << c2_idx);
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
|
|
|
|
const Layer<Helios> &parents = c1_layers[c1_idx];
|
|
const Layer<Selene> &children = c2_layers[c2_idx];
|
|
|
|
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c1_idx " + std::to_string(c1_idx));
|
|
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c2_idx " + std::to_string(c2_idx));
|
|
|
|
std::vector<Helios::Scalar> child_scalars;
|
|
fcmp_pp::tower_cycle::extend_scalars_from_cycle_points<Selene, Helios>(m_curve_trees.m_c2,
|
|
children,
|
|
child_scalars);
|
|
|
|
const bool valid = validate_layer<Helios>(
|
|
m_curve_trees.m_c1,
|
|
parents,
|
|
child_scalars,
|
|
m_curve_trees.m_c1_width);
|
|
|
|
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c1_idx " + std::to_string(c1_idx));
|
|
|
|
--c1_idx;
|
|
}
|
|
|
|
parent_is_c2 = !parent_is_c2;
|
|
}
|
|
|
|
MDEBUG("Validating leaves");
|
|
|
|
// Now validate leaves
|
|
return validate_layer<Selene>(m_curve_trees.m_c2,
|
|
c2_layers[0],
|
|
m_curve_trees.flatten_leaves(std::move(leaves)),
|
|
m_curve_trees.m_leaf_layer_chunk_width);
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// Logging helpers
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
void CurveTreesGlobalTree::log_last_hashes(const CurveTreesV1::LastHashes &last_hashes)
|
|
{
|
|
if (!el::Loggers::allowed(el::Level::Debug, "serialization"))
|
|
return;
|
|
|
|
const auto &c1_last_hashes = last_hashes.c1_last_hashes;
|
|
const auto &c2_last_hashes = last_hashes.c2_last_hashes;
|
|
|
|
MDEBUG("Total of " << c1_last_hashes.size() << " Helios layers and " << c2_last_hashes.size() << " Selene layers");
|
|
|
|
bool use_c2 = true;
|
|
std::size_t c1_idx = 0;
|
|
std::size_t c2_idx = 0;
|
|
for (std::size_t i = 0; i < (c1_last_hashes.size() + c2_last_hashes.size()); ++i)
|
|
{
|
|
if (use_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_hashes.size(), "unexpected c2 layer");
|
|
|
|
const auto &last_hash = c2_last_hashes[c2_idx];
|
|
MDEBUG("c2_idx: " << c2_idx << " , last_hash: " << m_curve_trees.m_c2->to_string(last_hash));
|
|
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_hashes.size(), "unexpected c1 layer");
|
|
|
|
const auto &last_hash = c1_last_hashes[c1_idx];
|
|
MDEBUG("c1_idx: " << c1_idx << " , last_hash: " << m_curve_trees.m_c1->to_string(last_hash));
|
|
|
|
++c1_idx;
|
|
}
|
|
|
|
use_c2 = !use_c2;
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
void CurveTreesGlobalTree::log_tree_extension(const CurveTreesV1::TreeExtension &tree_extension)
|
|
{
|
|
if (!el::Loggers::allowed(el::Level::Debug, "serialization"))
|
|
return;
|
|
|
|
const auto &c1_extensions = tree_extension.c1_layer_extensions;
|
|
const auto &c2_extensions = tree_extension.c2_layer_extensions;
|
|
|
|
MDEBUG("Tree extension has " << tree_extension.leaves.tuples.size() << " leaves, "
|
|
<< c1_extensions.size() << " helios layers, " << c2_extensions.size() << " selene layers");
|
|
|
|
MDEBUG("Leaf start idx: " << tree_extension.leaves.start_leaf_tuple_idx);
|
|
for (std::size_t i = 0; i < tree_extension.leaves.tuples.size(); ++i)
|
|
{
|
|
const auto &output_pair = tree_extension.leaves.tuples[i].output_pair;
|
|
const auto leaf = m_curve_trees.leaf_tuple(output_pair);
|
|
|
|
const auto O_x = m_curve_trees.m_c2->to_string(leaf.O_x);
|
|
const auto I_x = m_curve_trees.m_c2->to_string(leaf.I_x);
|
|
const auto C_x = m_curve_trees.m_c2->to_string(leaf.C_x);
|
|
|
|
MDEBUG("Leaf tuple idx " << (tree_extension.leaves.start_leaf_tuple_idx + (i * CurveTreesV1::LEAF_TUPLE_SIZE))
|
|
<< " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
|
|
}
|
|
|
|
bool use_c2 = true;
|
|
std::size_t c1_idx = 0;
|
|
std::size_t c2_idx = 0;
|
|
for (std::size_t i = 0; i < (c1_extensions.size() + c2_extensions.size()); ++i)
|
|
{
|
|
if (use_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer");
|
|
|
|
const fcmp_pp::curve_trees::LayerExtension<Selene> &c2_layer = c2_extensions[c2_idx];
|
|
MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx);
|
|
|
|
for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j)
|
|
MDEBUG("Child chunk start idx: " << (j + c2_layer.start_idx) << " , hash: "
|
|
<< m_curve_trees.m_c2->to_string(c2_layer.hashes[j]));
|
|
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer");
|
|
|
|
const fcmp_pp::curve_trees::LayerExtension<Helios> &c1_layer = c1_extensions[c1_idx];
|
|
MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx);
|
|
|
|
for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j)
|
|
MDEBUG("Child chunk start idx: " << (j + c1_layer.start_idx) << " , hash: "
|
|
<< m_curve_trees.m_c1->to_string(c1_layer.hashes[j]));
|
|
|
|
++c1_idx;
|
|
}
|
|
|
|
use_c2 = !use_c2;
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
void CurveTreesGlobalTree::log_tree()
|
|
{
|
|
if (!el::Loggers::allowed(el::Level::Debug, "serialization"))
|
|
return;
|
|
|
|
MDEBUG("Tree has " << m_tree.leaves.size() << " leaves, "
|
|
<< m_tree.c1_layers.size() << " helios layers, " << m_tree.c2_layers.size() << " selene layers");
|
|
|
|
for (std::size_t i = 0; i < m_tree.leaves.size(); ++i)
|
|
{
|
|
const auto &leaf = m_tree.leaves[i];
|
|
|
|
const auto O_x = m_curve_trees.m_c2->to_string(leaf.O_x);
|
|
const auto I_x = m_curve_trees.m_c2->to_string(leaf.I_x);
|
|
const auto C_x = m_curve_trees.m_c2->to_string(leaf.C_x);
|
|
|
|
MDEBUG("Leaf idx " << i << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
|
|
}
|
|
|
|
bool use_c2 = true;
|
|
std::size_t c1_idx = 0;
|
|
std::size_t c2_idx = 0;
|
|
for (std::size_t i = 0; i < (m_tree.c1_layers.size() + m_tree.c2_layers.size()); ++i)
|
|
{
|
|
if (use_c2)
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c2_idx < m_tree.c2_layers.size(), "unexpected c2 layer");
|
|
|
|
const CurveTreesGlobalTree::Layer<Selene> &c2_layer = m_tree.c2_layers[c2_idx];
|
|
MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i);
|
|
|
|
for (std::size_t j = 0; j < c2_layer.size(); ++j)
|
|
MDEBUG("Child chunk start idx: " << j << " , hash: " << m_curve_trees.m_c2->to_string(c2_layer[j]));
|
|
|
|
++c2_idx;
|
|
}
|
|
else
|
|
{
|
|
CHECK_AND_ASSERT_THROW_MES(c1_idx < m_tree.c1_layers.size(), "unexpected c1 layer");
|
|
|
|
const CurveTreesGlobalTree::Layer<Helios> &c1_layer = m_tree.c1_layers[c1_idx];
|
|
MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i);
|
|
|
|
for (std::size_t j = 0; j < c1_layer.size(); ++j)
|
|
MDEBUG("Child chunk start idx: " << j << " , hash: " << m_curve_trees.m_c1->to_string(c1_layer[j]));
|
|
|
|
++c1_idx;
|
|
}
|
|
|
|
use_c2 = !use_c2;
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// Test helpers
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
static const std::vector<fcmp_pp::curve_trees::OutputContext> generate_random_leaves(const CurveTreesV1 &curve_trees,
|
|
const std::size_t old_n_leaf_tuples,
|
|
const std::size_t new_n_leaf_tuples)
|
|
{
|
|
std::vector<fcmp_pp::curve_trees::OutputContext> outs;
|
|
outs.reserve(new_n_leaf_tuples);
|
|
|
|
for (std::size_t i = 0; i < new_n_leaf_tuples; ++i)
|
|
{
|
|
const std::uint64_t output_id = old_n_leaf_tuples + i;
|
|
|
|
// Generate random output tuple
|
|
crypto::secret_key o,c;
|
|
crypto::public_key O,C;
|
|
crypto::generate_keys(O, o, o, false);
|
|
crypto::generate_keys(C, c, c, false);
|
|
|
|
rct::key C_key = rct::pk2rct(C);
|
|
auto output_pair = fcmp_pp::curve_trees::OutputPair{
|
|
.output_pubkey = std::move(O),
|
|
.commitment = std::move(C_key)
|
|
};
|
|
|
|
auto output_context = fcmp_pp::curve_trees::OutputContext{
|
|
.output_id = output_id,
|
|
.output_pair = std::move(output_pair)
|
|
};
|
|
|
|
outs.emplace_back(std::move(output_context));
|
|
}
|
|
|
|
return outs;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
static const Selene::Scalar generate_random_selene_scalar()
|
|
{
|
|
crypto::secret_key s;
|
|
crypto::public_key S;
|
|
|
|
crypto::generate_keys(S, s, s, false);
|
|
|
|
rct::key S_x;
|
|
CHECK_AND_ASSERT_THROW_MES(fcmp_pp::point_to_wei_x(rct::pk2rct(S), S_x), "failed to convert to wei x");
|
|
return fcmp_pp::tower_cycle::selene_scalar_from_bytes(S_x);
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
static bool grow_tree_in_memory(CurveTreesV1 &curve_trees,
|
|
CurveTreesGlobalTree &global_tree,
|
|
const std::size_t expected_old_n_leaf_tuples,
|
|
const std::size_t new_n_leaf_tuples)
|
|
{
|
|
// Do initial tree reads
|
|
const std::size_t old_n_leaf_tuples = global_tree.get_num_leaf_tuples();
|
|
CHECK_AND_ASSERT_MES(old_n_leaf_tuples == expected_old_n_leaf_tuples, false, "unexpected old_n_leaf_tuples");
|
|
const CurveTreesV1::LastHashes last_hashes = global_tree.get_last_hashes();
|
|
|
|
global_tree.log_last_hashes(last_hashes);
|
|
|
|
auto new_outputs = generate_random_leaves(curve_trees, old_n_leaf_tuples, new_n_leaf_tuples);
|
|
|
|
// Get a tree extension object to the existing tree using randomly generated leaves
|
|
// - The tree extension includes all elements we'll need to add to the existing tree when adding the new leaves
|
|
const auto tree_extension = curve_trees.get_tree_extension(old_n_leaf_tuples,
|
|
last_hashes,
|
|
std::move(new_outputs));
|
|
|
|
global_tree.log_tree_extension(tree_extension);
|
|
|
|
// Use the tree extension to extend the existing tree
|
|
global_tree.extend_tree(tree_extension);
|
|
|
|
global_tree.log_tree();
|
|
|
|
// Validate tree structure and all hashes
|
|
const std::size_t expected_n_leaf_tuples = old_n_leaf_tuples + new_n_leaf_tuples;
|
|
return global_tree.audit_tree(expected_n_leaf_tuples);
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
static bool trim_tree_in_memory(const std::size_t expected_old_n_leaf_tuples,
|
|
const std::size_t trim_n_leaf_tuples,
|
|
CurveTreesGlobalTree &global_tree)
|
|
{
|
|
const std::size_t old_n_leaf_tuples = global_tree.get_num_leaf_tuples();
|
|
CHECK_AND_ASSERT_MES(old_n_leaf_tuples == expected_old_n_leaf_tuples, false, "unexpected old_n_leaf_tuples");
|
|
CHECK_AND_ASSERT_THROW_MES(old_n_leaf_tuples >= trim_n_leaf_tuples, "cannot trim more leaves than exist");
|
|
CHECK_AND_ASSERT_THROW_MES(trim_n_leaf_tuples > 0, "must be trimming some leaves");
|
|
|
|
// Trim the global tree by `trim_n_leaf_tuples`
|
|
LOG_PRINT_L1("Trimming " << trim_n_leaf_tuples << " leaf tuples from tree with "
|
|
<< old_n_leaf_tuples << " leaves in memory");
|
|
|
|
global_tree.trim_tree(trim_n_leaf_tuples);
|
|
|
|
MDEBUG("Finished trimming " << trim_n_leaf_tuples << " leaf tuples from tree");
|
|
|
|
global_tree.log_tree();
|
|
|
|
const std::size_t expected_n_leaf_tuples = old_n_leaf_tuples - trim_n_leaf_tuples;
|
|
bool res = global_tree.audit_tree(expected_n_leaf_tuples);
|
|
CHECK_AND_ASSERT_MES(res, false, "failed to trim tree in memory");
|
|
|
|
MDEBUG("Successfully trimmed " << trim_n_leaf_tuples << " leaves in memory");
|
|
return true;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
static bool grow_tree_db(const std::size_t expected_old_n_leaf_tuples,
|
|
const std::size_t n_leaves,
|
|
std::shared_ptr<CurveTreesV1> curve_trees,
|
|
unit_test::BlockchainLMDBTest &test_db)
|
|
{
|
|
cryptonote::db_wtxn_guard guard(test_db.m_db);
|
|
|
|
CHECK_AND_ASSERT_MES(test_db.m_db->get_num_leaf_tuples() == (uint64_t)(expected_old_n_leaf_tuples),
|
|
false, "unexpected starting n leaf tuples in db");
|
|
|
|
auto leaves = generate_random_leaves(*curve_trees, 0, n_leaves);
|
|
|
|
test_db.m_db->grow_tree(std::move(leaves));
|
|
|
|
return test_db.m_db->audit_tree(expected_old_n_leaf_tuples + n_leaves);
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
static bool trim_tree_db(const std::size_t expected_old_n_leaf_tuples,
|
|
const std::size_t trim_leaves,
|
|
unit_test::BlockchainLMDBTest &test_db)
|
|
{
|
|
cryptonote::db_wtxn_guard guard(test_db.m_db);
|
|
|
|
CHECK_AND_ASSERT_THROW_MES(expected_old_n_leaf_tuples >= trim_leaves, "cannot trim more leaves than exist");
|
|
CHECK_AND_ASSERT_THROW_MES(trim_leaves > 0, "must be trimming some leaves");
|
|
|
|
LOG_PRINT_L1("Trimming " << trim_leaves << " leaf tuples from tree with "
|
|
<< expected_old_n_leaf_tuples << " leaves in db");
|
|
|
|
CHECK_AND_ASSERT_MES(test_db.m_db->get_num_leaf_tuples() == (uint64_t)(expected_old_n_leaf_tuples),
|
|
false, "trimming unexpected starting n leaf tuples in db");
|
|
|
|
// Can use 0 for trim_block_id since it's unused in tests
|
|
test_db.m_db->trim_tree(trim_leaves, 0);
|
|
CHECK_AND_ASSERT_MES(test_db.m_db->audit_tree(expected_old_n_leaf_tuples - trim_leaves), false,
|
|
"failed to trim tree in db");
|
|
|
|
MDEBUG("Successfully trimmed tree in db by " << trim_leaves << " leaves");
|
|
|
|
return true;
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
#define INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth) \
|
|
static_assert(helios_chunk_width > 1, "helios width must be > 1"); \
|
|
static_assert(selene_chunk_width > 1, "selene width must be > 1"); \
|
|
const auto curve_trees = fcmp_pp::curve_trees::curve_trees_v1(helios_chunk_width, selene_chunk_width); \
|
|
\
|
|
/* Number of leaves required for tree to reach given depth */ \
|
|
std::size_t min_leaves_needed_for_tree_depth = selene_chunk_width; \
|
|
for (std::size_t i = 1; i < tree_depth; ++i) \
|
|
{ \
|
|
const std::size_t width = i % 2 == 0 ? selene_chunk_width : helios_chunk_width; \
|
|
min_leaves_needed_for_tree_depth *= width; \
|
|
} \
|
|
\
|
|
/* Increment to test for off-by-1 */ \
|
|
++min_leaves_needed_for_tree_depth; \
|
|
\
|
|
unit_test::BlockchainLMDBTest test_db; \
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
#define BEGIN_INIT_TREE_ITER(curve_trees) \
|
|
for (std::size_t init_leaves = 1; init_leaves <= min_leaves_needed_for_tree_depth; ++init_leaves) \
|
|
{ \
|
|
LOG_PRINT_L1("Initializing tree with " << init_leaves << " leaves"); \
|
|
\
|
|
/* Init tree in memory */ \
|
|
CurveTreesGlobalTree global_tree(*curve_trees); \
|
|
ASSERT_TRUE(grow_tree_in_memory(*curve_trees, global_tree, 0, init_leaves)); \
|
|
\
|
|
/* Init tree in db */ \
|
|
INIT_BLOCKCHAIN_LMDB_TEST_DB(test_db, curve_trees); \
|
|
ASSERT_TRUE(grow_tree_db(0, init_leaves, curve_trees, test_db)); \
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
#define END_INIT_TREE_ITER(curve_trees) \
|
|
}; \
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// Test
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
TEST(curve_trees, grow_tree)
|
|
{
|
|
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
|
|
static const std::size_t helios_chunk_width = 3;
|
|
static const std::size_t selene_chunk_width = 2;
|
|
|
|
static const std::size_t tree_depth = 4;
|
|
|
|
LOG_PRINT_L1("Test grow tree with helios chunk width " << helios_chunk_width
|
|
<< ", selene chunk width " << selene_chunk_width << ", tree depth " << tree_depth);
|
|
|
|
INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth);
|
|
|
|
// First initialize the tree with init_leaves
|
|
BEGIN_INIT_TREE_ITER(curve_trees)
|
|
|
|
// Then extend the tree with ext_leaves
|
|
for (std::size_t ext_leaves = 1; (init_leaves + ext_leaves) <= min_leaves_needed_for_tree_depth; ++ext_leaves)
|
|
{
|
|
// Tree in memory
|
|
// Copy the already existing global tree
|
|
CurveTreesGlobalTree tree_copy(global_tree);
|
|
ASSERT_TRUE(grow_tree_in_memory(*curve_trees, tree_copy, init_leaves, ext_leaves));
|
|
|
|
// Tree in db
|
|
// Copy the already existing db
|
|
unit_test::BlockchainLMDBTest copy_db = *test_db.copy_db(curve_trees);
|
|
INIT_BLOCKCHAIN_LMDB_TEST_DB(copy_db, nullptr);
|
|
ASSERT_TRUE(grow_tree_db(init_leaves, ext_leaves, curve_trees, copy_db));
|
|
}
|
|
|
|
END_INIT_TREE_ITER()
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
TEST(curve_trees, trim_tree)
|
|
{
|
|
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
|
|
static const std::size_t helios_chunk_width = 3;
|
|
static const std::size_t selene_chunk_width = 3;
|
|
|
|
static const std::size_t tree_depth = 4;
|
|
|
|
LOG_PRINT_L1("Test trim tree with helios chunk width " << helios_chunk_width
|
|
<< ", selene chunk width " << selene_chunk_width << ", tree depth " << tree_depth);
|
|
|
|
INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth);
|
|
|
|
// First initialize the tree with init_leaves
|
|
BEGIN_INIT_TREE_ITER(curve_trees)
|
|
|
|
// Then trim by trim_leaves
|
|
for (std::size_t trim_leaves = 1; trim_leaves <= min_leaves_needed_for_tree_depth; ++trim_leaves)
|
|
{
|
|
if (trim_leaves > init_leaves)
|
|
continue;
|
|
|
|
// Tree in memory
|
|
// Copy the already existing global tree
|
|
CurveTreesGlobalTree tree_copy(global_tree);
|
|
ASSERT_TRUE(trim_tree_in_memory(init_leaves, trim_leaves, tree_copy));
|
|
|
|
// Tree in db
|
|
// Copy the already existing db
|
|
unit_test::BlockchainLMDBTest copy_db = *test_db.copy_db(curve_trees);
|
|
INIT_BLOCKCHAIN_LMDB_TEST_DB(copy_db, nullptr);
|
|
ASSERT_TRUE(trim_tree_db(init_leaves, trim_leaves, copy_db));
|
|
}
|
|
|
|
END_INIT_TREE_ITER()
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
TEST(curve_trees, trim_tree_then_grow)
|
|
{
|
|
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
|
|
static const std::size_t helios_chunk_width = 3;
|
|
static const std::size_t selene_chunk_width = 3;
|
|
|
|
static const std::size_t tree_depth = 2;
|
|
|
|
static const std::size_t grow_after_trim = 1;
|
|
|
|
LOG_PRINT_L1("Test trim tree with helios chunk width " << helios_chunk_width
|
|
<< ", selene chunk width " << selene_chunk_width << ", tree depth " << tree_depth
|
|
<< ", then grow " << grow_after_trim << " leaf/leaves");
|
|
|
|
INIT_CURVE_TREES_TEST(helios_chunk_width, selene_chunk_width, tree_depth);
|
|
|
|
// First initialize the tree with init_leaves
|
|
BEGIN_INIT_TREE_ITER(curve_trees)
|
|
|
|
// Then trim by trim_leaves
|
|
for (std::size_t trim_leaves = 1; trim_leaves <= min_leaves_needed_for_tree_depth; ++trim_leaves)
|
|
{
|
|
if (trim_leaves > init_leaves)
|
|
continue;
|
|
|
|
// Tree in memory
|
|
// Copy the already existing global tree
|
|
CurveTreesGlobalTree tree_copy(global_tree);
|
|
ASSERT_TRUE(trim_tree_in_memory(init_leaves, trim_leaves, tree_copy));
|
|
ASSERT_TRUE(grow_tree_in_memory(*curve_trees, tree_copy, init_leaves - trim_leaves, grow_after_trim));
|
|
|
|
// Tree in db
|
|
// Copy the already existing db
|
|
unit_test::BlockchainLMDBTest copy_db = *test_db.copy_db(curve_trees);
|
|
INIT_BLOCKCHAIN_LMDB_TEST_DB(copy_db, nullptr);
|
|
ASSERT_TRUE(trim_tree_db(init_leaves, trim_leaves, copy_db));
|
|
ASSERT_TRUE(grow_tree_db(init_leaves - trim_leaves, grow_after_trim, curve_trees, copy_db));
|
|
}
|
|
|
|
END_INIT_TREE_ITER()
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// Make sure the result of hash_trim is the same as the equivalent hash_grow excluding the trimmed children
|
|
TEST(curve_trees, hash_trim)
|
|
{
|
|
const auto curve_trees = fcmp_pp::curve_trees::curve_trees_v1();
|
|
|
|
// 1. Trim 1
|
|
{
|
|
// Start by hashing: {selene_scalar_0, selene_scalar_1}
|
|
// Then trim to: {selene_scalar_0}
|
|
const auto selene_scalar_0 = generate_random_selene_scalar();
|
|
const auto selene_scalar_1 = generate_random_selene_scalar();
|
|
|
|
// Get the initial hash of the 2 scalars
|
|
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1};
|
|
const auto init_hash = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
|
|
|
// Trim selene_scalar_1
|
|
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 1};
|
|
const auto trim_res = curve_trees->m_c2->hash_trim(
|
|
init_hash,
|
|
1,
|
|
trimmed_children,
|
|
curve_trees->m_c2->zero_scalar());
|
|
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
|
|
|
|
// Now compare to calling hash_grow{selene_scalar_0}
|
|
std::vector<Selene::Scalar> remaining_children{selene_scalar_0};
|
|
const auto grow_res = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
|
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
|
|
|
|
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
|
}
|
|
|
|
// 2. Trim 2
|
|
{
|
|
// Start by hashing: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
|
|
// Then trim to: {selene_scalar_0}
|
|
const auto selene_scalar_0 = generate_random_selene_scalar();
|
|
const auto selene_scalar_1 = generate_random_selene_scalar();
|
|
const auto selene_scalar_2 = generate_random_selene_scalar();
|
|
|
|
// Get the initial hash of the 3 selene scalars
|
|
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1, selene_scalar_2};
|
|
const auto init_hash = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
|
|
|
// Trim the initial result by 2 children
|
|
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 2};
|
|
const auto trim_res = curve_trees->m_c2->hash_trim(
|
|
init_hash,
|
|
1,
|
|
trimmed_children,
|
|
curve_trees->m_c2->zero_scalar());
|
|
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
|
|
|
|
// Now compare to calling hash_grow{selene_scalar_0}
|
|
std::vector<Selene::Scalar> remaining_children{selene_scalar_0};
|
|
const auto grow_res = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
|
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
|
|
|
|
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
|
}
|
|
|
|
// 3. Change 1
|
|
{
|
|
// Start by hashing: {selene_scalar_0, selene_scalar_1}
|
|
// Then change to: {selene_scalar_0, selene_scalar_2}
|
|
const auto selene_scalar_0 = generate_random_selene_scalar();
|
|
const auto selene_scalar_1 = generate_random_selene_scalar();
|
|
|
|
// Get the initial hash of the 2 selene scalars
|
|
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1};
|
|
const auto init_hash = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
|
|
|
const auto selene_scalar_2 = generate_random_selene_scalar();
|
|
|
|
// Trim the 2nd child and grow with new child
|
|
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 1};
|
|
const auto trim_res = curve_trees->m_c2->hash_trim(
|
|
init_hash,
|
|
1,
|
|
trimmed_children,
|
|
selene_scalar_2);
|
|
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
|
|
|
|
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_2}
|
|
std::vector<Selene::Scalar> remaining_children{selene_scalar_0, selene_scalar_2};
|
|
const auto grow_res = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
|
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
|
|
|
|
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
|
}
|
|
|
|
// 4. Trim 2 and grow back by 1
|
|
{
|
|
// Start by hashing: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
|
|
// Then trim+grow to: {selene_scalar_0, selene_scalar_3}
|
|
const auto selene_scalar_0 = generate_random_selene_scalar();
|
|
const auto selene_scalar_1 = generate_random_selene_scalar();
|
|
const auto selene_scalar_2 = generate_random_selene_scalar();
|
|
|
|
// Get the initial hash of the 3 selene scalars
|
|
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1, selene_scalar_2};
|
|
const auto init_hash = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
|
|
|
const auto selene_scalar_3 = generate_random_selene_scalar();
|
|
|
|
// Trim the initial result by 2 children+grow by 1
|
|
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 2};
|
|
const auto trim_res = curve_trees->m_c2->hash_trim(
|
|
init_hash,
|
|
1,
|
|
trimmed_children,
|
|
selene_scalar_3);
|
|
const auto trim_res_bytes = curve_trees->m_c2->to_bytes(trim_res);
|
|
|
|
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_3}
|
|
std::vector<Selene::Scalar> remaining_children{selene_scalar_0, selene_scalar_3};
|
|
const auto grow_res = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
|
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
|
|
|
|
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
TEST(curve_trees, hash_grow)
|
|
{
|
|
const auto curve_trees = fcmp_pp::curve_trees::curve_trees_v1();
|
|
|
|
// Start by hashing: {selene_scalar_0, selene_scalar_1}
|
|
// Then grow 1: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
|
|
// Then grow 1: {selene_scalar_0, selene_scalar_1, selene_scalar_2, selene_scalar_3}
|
|
const auto selene_scalar_0 = generate_random_selene_scalar();
|
|
const auto selene_scalar_1 = generate_random_selene_scalar();
|
|
|
|
// Get the initial hash of the 2 selene scalars
|
|
std::vector<Selene::Scalar> all_children{selene_scalar_0, selene_scalar_1};
|
|
const auto init_hash = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{all_children.data(), all_children.size()});
|
|
|
|
// Extend with a new child
|
|
const auto selene_scalar_2 = generate_random_selene_scalar();
|
|
std::vector<Selene::Scalar> new_children{selene_scalar_2};
|
|
const auto ext_hash = curve_trees->m_c2->hash_grow(
|
|
init_hash,
|
|
all_children.size(),
|
|
curve_trees->m_c2->zero_scalar(),
|
|
Selene::Chunk{new_children.data(), new_children.size()});
|
|
const auto ext_hash_bytes = curve_trees->m_c2->to_bytes(ext_hash);
|
|
|
|
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_1, selene_scalar_2}
|
|
all_children.push_back(selene_scalar_2);
|
|
const auto grow_res = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{all_children.data(), all_children.size()});
|
|
const auto grow_res_bytes = curve_trees->m_c2->to_bytes(grow_res);
|
|
|
|
ASSERT_EQ(ext_hash_bytes, grow_res_bytes);
|
|
|
|
// Extend again with a new child
|
|
const auto selene_scalar_3 = generate_random_selene_scalar();
|
|
new_children.clear();
|
|
new_children = {selene_scalar_3};
|
|
const auto ext_hash2 = curve_trees->m_c2->hash_grow(
|
|
ext_hash,
|
|
all_children.size(),
|
|
curve_trees->m_c2->zero_scalar(),
|
|
Selene::Chunk{new_children.data(), new_children.size()});
|
|
const auto ext_hash_bytes2 = curve_trees->m_c2->to_bytes(ext_hash2);
|
|
|
|
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_1, selene_scalar_2, selene_scalar_3}
|
|
all_children.push_back(selene_scalar_3);
|
|
const auto grow_res2 = curve_trees->m_c2->hash_grow(
|
|
/*existing_hash*/ curve_trees->m_c2->hash_init_point(),
|
|
/*offset*/ 0,
|
|
/*existing_child_at_offset*/ curve_trees->m_c2->zero_scalar(),
|
|
/*children*/ Selene::Chunk{all_children.data(), all_children.size()});
|
|
const auto grow_res_bytes2 = curve_trees->m_c2->to_bytes(grow_res2);
|
|
|
|
ASSERT_EQ(ext_hash_bytes2, grow_res_bytes2);
|
|
}
|