mirror of
https://github.com/monero-project/monero.git
synced 2024-10-01 11:49:47 -04:00
379 lines
14 KiB
C++
379 lines
14 KiB
C++
// Copyright (c) 2017-2024, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "crypto/crypto.h"
|
|
#include "multisig/multisig_account.h"
|
|
#include "multisig/multisig_kex_msg.h"
|
|
#include "ringct/rctOps.h"
|
|
#include "wallet/wallet2.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <cstdint>
|
|
|
|
static const struct
|
|
{
|
|
const char *address;
|
|
const char *spendkey;
|
|
} test_addresses[] =
|
|
{
|
|
{
|
|
"9uvjbU54ZJb8j7Dcq1h3F1DnBRkxXdYUX4pbJ7mE3ghM8uF3fKzqRKRNAKYZXcNLqMg7MxjVVD2wKC2PALUwEveGSC3YSWD",
|
|
"2dd6e34a234c3e8b5d29a371789e4601e96dee4ea6f7ef79224d1a2d91164c01"
|
|
},
|
|
{
|
|
"9ywDBAyDbb6QKFiZxDJ4hHZqZEQXXCR5EaYNcndUpqPDeE7rEgs6neQdZnhcDrWbURYK8xUjhuG2mVjJdmknrZbcG7NnbaB",
|
|
"fac47aecc948ce9d3531aa042abb18235b1df632087c55a361b632ffdd6ede0c"
|
|
},
|
|
{
|
|
"9t6Hn946u3eah5cuncH1hB5hGzsTUoevtf4SY7MHN5NgJZh2SFWsyVt3vUhuHyRKyrCQvr71Lfc1AevG3BXE11PQFoXDtD8",
|
|
"bbd3175ef9fd9f5eefdc43035f882f74ad14c4cf1799d8b6f9001bc197175d02"
|
|
},
|
|
{
|
|
"9zmAWoNyNPbgnYSm3nJNpAKHm6fCcs3MR94gBWxp9MCDUiMUhyYFfyQETUDLPF7DP6ZsmNo6LRxwPP9VmhHNxKrER9oGigT",
|
|
"f2efae45bef1917a7430cda8fcffc4ee010e3178761aa41d4628e23b1fe2d501"
|
|
},
|
|
{
|
|
"9ue8NJMg3WzKxTtmjeXzWYF5KmU6dC7LHEt9wvYdPn2qMmoFUa8hJJHhSHvJ46UEwpDyy5jSboNMRaDBKwU54NT42YcNUp5",
|
|
"a4cef54ed3fd61cd78a2ceb82ecf85a903ad2db9a86fb77ff56c35c56016280a"
|
|
}
|
|
};
|
|
|
|
static const size_t KEYS_COUNT = 5;
|
|
|
|
static void make_wallet(unsigned int idx, tools::wallet2 &wallet)
|
|
{
|
|
ASSERT_TRUE(idx < sizeof(test_addresses) / sizeof(test_addresses[0]));
|
|
|
|
crypto::secret_key spendkey;
|
|
epee::string_tools::hex_to_pod(test_addresses[idx].spendkey, spendkey);
|
|
|
|
try
|
|
{
|
|
wallet.init("", boost::none, "", 0, true, epee::net_utils::ssl_support_t::e_ssl_support_disabled);
|
|
wallet.set_subaddress_lookahead(1, 1);
|
|
wallet.generate("", "", spendkey, true, false);
|
|
ASSERT_TRUE(test_addresses[idx].address == wallet.get_account().get_public_address_str(cryptonote::TESTNET));
|
|
wallet.decrypt_keys("");
|
|
ASSERT_TRUE(test_addresses[idx].spendkey == epee::string_tools::pod_to_hex(wallet.get_account().get_keys().m_spend_secret_key));
|
|
wallet.encrypt_keys("");
|
|
}
|
|
catch (const std::exception &e)
|
|
{
|
|
MFATAL("Error creating test wallet: " << e.what());
|
|
ASSERT_TRUE(0);
|
|
}
|
|
}
|
|
|
|
static std::vector<std::string> exchange_round(std::vector<tools::wallet2>& wallets, const std::vector<std::string>& infos)
|
|
{
|
|
std::vector<std::string> new_infos;
|
|
new_infos.reserve(infos.size());
|
|
|
|
for (size_t i = 0; i < wallets.size(); ++i)
|
|
new_infos.push_back(wallets[i].exchange_multisig_keys("", infos));
|
|
|
|
return new_infos;
|
|
}
|
|
|
|
static std::vector<std::string> exchange_round_force_update(std::vector<tools::wallet2>& wallets,
|
|
const std::vector<std::string>& infos,
|
|
const std::size_t round_in_progress)
|
|
{
|
|
EXPECT_TRUE(wallets.size() == infos.size());
|
|
std::vector<std::string> new_infos;
|
|
std::vector<std::string> temp_force_update_infos;
|
|
new_infos.reserve(infos.size());
|
|
|
|
// when force-updating, we only need at most 'num_signers - 1 - (round - 1)' messages from other signers
|
|
size_t num_other_messages_required{wallets.size() - 1 - (round_in_progress - 1)};
|
|
if (num_other_messages_required > wallets.size())
|
|
num_other_messages_required = 0; //overflow case for post-kex verification round of 1-of-N
|
|
|
|
for (size_t i = 0; i < wallets.size(); ++i)
|
|
{
|
|
temp_force_update_infos.clear();
|
|
temp_force_update_infos.reserve(num_other_messages_required + 1);
|
|
temp_force_update_infos.push_back(infos[i]); //always include the local signer's message for this round
|
|
|
|
size_t infos_collected{0};
|
|
for (size_t wallet_index = 0; wallet_index < wallets.size(); ++wallet_index)
|
|
{
|
|
// skip the local signer's message
|
|
if (wallet_index == i)
|
|
continue;
|
|
|
|
temp_force_update_infos.push_back(infos[wallet_index]);
|
|
++infos_collected;
|
|
|
|
if (infos_collected == num_other_messages_required)
|
|
break;
|
|
}
|
|
|
|
new_infos.push_back(wallets[i].exchange_multisig_keys("", temp_force_update_infos, true));
|
|
}
|
|
|
|
return new_infos;
|
|
}
|
|
|
|
static void check_results(const std::vector<std::string> &intermediate_infos,
|
|
std::vector<tools::wallet2>& wallets,
|
|
const std::uint32_t M)
|
|
{
|
|
// check results
|
|
std::unordered_set<crypto::secret_key> unique_privkeys;
|
|
rct::key composite_pubkey = rct::identity();
|
|
|
|
wallets[0].decrypt_keys("");
|
|
crypto::public_key spend_pubkey = wallets[0].get_account().get_keys().m_account_address.m_spend_public_key;
|
|
crypto::secret_key view_privkey = wallets[0].get_account().get_keys().m_view_secret_key;
|
|
crypto::public_key view_pubkey;
|
|
EXPECT_TRUE(crypto::secret_key_to_public_key(view_privkey, view_pubkey));
|
|
wallets[0].encrypt_keys("");
|
|
|
|
for (size_t i = 0; i < wallets.size(); ++i)
|
|
{
|
|
EXPECT_TRUE(!intermediate_infos[i].empty());
|
|
const multisig::multisig_account_status ms_status{wallets[i].get_multisig_status()};
|
|
EXPECT_TRUE(ms_status.multisig_is_active);
|
|
EXPECT_TRUE(ms_status.kex_is_done);
|
|
EXPECT_TRUE(ms_status.is_ready);
|
|
EXPECT_TRUE(ms_status.threshold == M);
|
|
EXPECT_TRUE(ms_status.total == wallets.size());
|
|
|
|
wallets[i].decrypt_keys("");
|
|
|
|
if (i != 0)
|
|
{
|
|
// "equals" is transitive relation so we need only to compare first wallet's address to each others' addresses.
|
|
// no need to compare 0's address with itself.
|
|
EXPECT_TRUE(wallets[0].get_account().get_public_address_str(cryptonote::TESTNET) ==
|
|
wallets[i].get_account().get_public_address_str(cryptonote::TESTNET));
|
|
|
|
EXPECT_EQ(spend_pubkey, wallets[i].get_account().get_keys().m_account_address.m_spend_public_key);
|
|
EXPECT_EQ(view_privkey, wallets[i].get_account().get_keys().m_view_secret_key);
|
|
EXPECT_EQ(view_pubkey, wallets[i].get_account().get_keys().m_account_address.m_view_public_key);
|
|
}
|
|
|
|
// sum together unique multisig keys
|
|
for (const auto &privkey : wallets[i].get_account().get_keys().m_multisig_keys)
|
|
{
|
|
EXPECT_NE(privkey, crypto::null_skey);
|
|
|
|
if (unique_privkeys.find(privkey) == unique_privkeys.end())
|
|
{
|
|
unique_privkeys.insert(privkey);
|
|
crypto::public_key pubkey;
|
|
crypto::secret_key_to_public_key(privkey, pubkey);
|
|
EXPECT_NE(privkey, crypto::null_skey);
|
|
EXPECT_NE(pubkey, crypto::null_pkey);
|
|
EXPECT_NE(pubkey, rct::rct2pk(rct::identity()));
|
|
rct::addKeys(composite_pubkey, composite_pubkey, rct::pk2rct(pubkey));
|
|
}
|
|
}
|
|
wallets[i].encrypt_keys("");
|
|
}
|
|
|
|
// final key via sums should equal the wallets' public spend key
|
|
wallets[0].decrypt_keys("");
|
|
EXPECT_EQ(wallets[0].get_account().get_keys().m_account_address.m_spend_public_key, rct::rct2pk(composite_pubkey));
|
|
wallets[0].encrypt_keys("");
|
|
}
|
|
|
|
static void make_wallets(const unsigned int M, const unsigned int N, const bool force_update)
|
|
{
|
|
std::vector<tools::wallet2> wallets(N);
|
|
ASSERT_TRUE(wallets.size() > 1 && wallets.size() <= KEYS_COUNT);
|
|
ASSERT_TRUE(M <= wallets.size());
|
|
std::uint32_t total_rounds_required = multisig::multisig_setup_rounds_required(wallets.size(), M);
|
|
std::uint32_t rounds_complete{0};
|
|
|
|
// initialize wallets, get first round multisig kex msgs
|
|
std::vector<std::string> initial_infos(wallets.size());
|
|
|
|
for (size_t i = 0; i < wallets.size(); ++i)
|
|
{
|
|
make_wallet(i, wallets[i]);
|
|
|
|
wallets[i].decrypt_keys("");
|
|
initial_infos[i] = wallets[i].get_multisig_first_kex_msg();
|
|
wallets[i].encrypt_keys("");
|
|
}
|
|
|
|
// wallets should not be multisig yet
|
|
for (const auto& wallet: wallets)
|
|
ASSERT_FALSE(wallet.get_multisig_status().multisig_is_active);
|
|
|
|
// make wallets multisig, get second round kex messages (if appropriate)
|
|
std::vector<std::string> intermediate_infos(wallets.size());
|
|
|
|
for (size_t i = 0; i < wallets.size(); ++i)
|
|
{
|
|
intermediate_infos[i] = wallets[i].make_multisig("", initial_infos, M);
|
|
}
|
|
|
|
++rounds_complete;
|
|
|
|
// perform kex rounds until kex is complete
|
|
multisig::multisig_account_status ms_status{wallets[0].get_multisig_status()};
|
|
while (!ms_status.is_ready)
|
|
{
|
|
if (force_update)
|
|
intermediate_infos = exchange_round_force_update(wallets, intermediate_infos, rounds_complete + 1);
|
|
else
|
|
intermediate_infos = exchange_round(wallets, intermediate_infos);
|
|
|
|
ms_status = wallets[0].get_multisig_status();
|
|
++rounds_complete;
|
|
}
|
|
|
|
EXPECT_EQ(total_rounds_required, rounds_complete);
|
|
|
|
check_results(intermediate_infos, wallets, M);
|
|
}
|
|
|
|
TEST(multisig, make_1_2)
|
|
{
|
|
make_wallets(1, 2, false);
|
|
make_wallets(1, 2, true);
|
|
}
|
|
|
|
TEST(multisig, make_1_3)
|
|
{
|
|
make_wallets(1, 3, false);
|
|
make_wallets(1, 3, true);
|
|
}
|
|
|
|
TEST(multisig, make_2_2)
|
|
{
|
|
make_wallets(2, 2, false);
|
|
make_wallets(2, 2, true);
|
|
}
|
|
|
|
TEST(multisig, make_3_3)
|
|
{
|
|
make_wallets(3, 3, false);
|
|
make_wallets(3, 3, true);
|
|
}
|
|
|
|
TEST(multisig, make_2_3)
|
|
{
|
|
make_wallets(2, 3, false);
|
|
make_wallets(2, 3, true);
|
|
}
|
|
|
|
TEST(multisig, make_2_4)
|
|
{
|
|
make_wallets(2, 4, false);
|
|
make_wallets(2, 4, true);
|
|
}
|
|
|
|
TEST(multisig, multisig_kex_msg)
|
|
{
|
|
using namespace multisig;
|
|
|
|
crypto::public_key pubkey1;
|
|
crypto::public_key pubkey2;
|
|
crypto::public_key pubkey3;
|
|
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey1);
|
|
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey2);
|
|
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey3);
|
|
|
|
crypto::secret_key signing_skey = rct::rct2sk(rct::skGen());
|
|
crypto::public_key signing_pubkey;
|
|
while(!crypto::secret_key_to_public_key(signing_skey, signing_pubkey))
|
|
{
|
|
signing_skey = rct::rct2sk(rct::skGen());
|
|
}
|
|
|
|
const crypto::secret_key ancillary_skey{rct::rct2sk(rct::skGen())};
|
|
|
|
// misc. edge cases
|
|
EXPECT_NO_THROW((multisig_kex_msg{}));
|
|
EXPECT_ANY_THROW((multisig_kex_msg{multisig_kex_msg{}.get_msg()}));
|
|
EXPECT_ANY_THROW((multisig_kex_msg{"abc"}));
|
|
EXPECT_ANY_THROW((multisig_kex_msg{0, crypto::null_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
|
|
EXPECT_ANY_THROW((multisig_kex_msg{1, crypto::null_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
|
|
EXPECT_ANY_THROW((multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
|
|
EXPECT_ANY_THROW((multisig_kex_msg{1, crypto::null_skey, std::vector<crypto::public_key>{}, ancillary_skey}));
|
|
|
|
// test that messages are both constructible and reversible
|
|
|
|
// round 1
|
|
EXPECT_NO_THROW((multisig_kex_msg{
|
|
multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{}, ancillary_skey}.get_msg()
|
|
}));
|
|
EXPECT_NO_THROW((multisig_kex_msg{
|
|
multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey}.get_msg()
|
|
}));
|
|
|
|
// round 2
|
|
EXPECT_NO_THROW((multisig_kex_msg{
|
|
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey}.get_msg()
|
|
}));
|
|
EXPECT_NO_THROW((multisig_kex_msg{
|
|
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1}, crypto::null_skey}.get_msg()
|
|
}));
|
|
EXPECT_NO_THROW((multisig_kex_msg{
|
|
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2}, ancillary_skey}.get_msg()
|
|
}));
|
|
EXPECT_NO_THROW((multisig_kex_msg{
|
|
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2, pubkey3}, crypto::null_skey}.get_msg()
|
|
}));
|
|
|
|
// test that keys can be recovered if stored in a message and the message's reverse
|
|
|
|
// round 1
|
|
const multisig_kex_msg msg_rnd1{1, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey};
|
|
const multisig_kex_msg msg_rnd1_reverse{msg_rnd1.get_msg()};
|
|
EXPECT_EQ(msg_rnd1.get_round(), 1);
|
|
EXPECT_EQ(msg_rnd1.get_round(), msg_rnd1_reverse.get_round());
|
|
EXPECT_EQ(msg_rnd1.get_signing_pubkey(), signing_pubkey);
|
|
EXPECT_EQ(msg_rnd1.get_signing_pubkey(), msg_rnd1_reverse.get_signing_pubkey());
|
|
EXPECT_EQ(msg_rnd1.get_msg_pubkeys().size(), 0);
|
|
EXPECT_EQ(msg_rnd1.get_msg_pubkeys().size(), msg_rnd1_reverse.get_msg_pubkeys().size());
|
|
EXPECT_EQ(msg_rnd1.get_msg_privkey(), ancillary_skey);
|
|
EXPECT_EQ(msg_rnd1.get_msg_privkey(), msg_rnd1_reverse.get_msg_privkey());
|
|
|
|
// round 2
|
|
const multisig_kex_msg msg_rnd2{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2}, ancillary_skey};
|
|
const multisig_kex_msg msg_rnd2_reverse{msg_rnd2.get_msg()};
|
|
EXPECT_EQ(msg_rnd2.get_round(), 2);
|
|
EXPECT_EQ(msg_rnd2.get_round(), msg_rnd2_reverse.get_round());
|
|
EXPECT_EQ(msg_rnd2.get_signing_pubkey(), signing_pubkey);
|
|
EXPECT_EQ(msg_rnd2.get_signing_pubkey(), msg_rnd2_reverse.get_signing_pubkey());
|
|
ASSERT_EQ(msg_rnd2.get_msg_pubkeys().size(), 2);
|
|
ASSERT_EQ(msg_rnd2.get_msg_pubkeys().size(), msg_rnd2_reverse.get_msg_pubkeys().size());
|
|
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[0], pubkey1);
|
|
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[1], pubkey2);
|
|
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[0], msg_rnd2_reverse.get_msg_pubkeys()[0]);
|
|
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[1], msg_rnd2_reverse.get_msg_pubkeys()[1]);
|
|
EXPECT_EQ(msg_rnd2.get_msg_privkey(), crypto::null_skey);
|
|
EXPECT_EQ(msg_rnd2.get_msg_privkey(), msg_rnd2_reverse.get_msg_privkey());
|
|
}
|