mirror of
https://github.com/monero-project/monero.git
synced 2025-01-01 14:26:15 -05:00
166 lines
5.8 KiB
C++
166 lines
5.8 KiB
C++
// Copyright (c) 2014-2017, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
#include "common/int-util.h"
|
|
#include "crypto/hash.h"
|
|
#include "cryptonote_config.h"
|
|
#include "difficulty.h"
|
|
|
|
#undef MONERO_DEFAULT_LOG_CATEGORY
|
|
#define MONERO_DEFAULT_LOG_CATEGORY "difficulty"
|
|
|
|
namespace cryptonote {
|
|
|
|
using std::size_t;
|
|
using std::uint64_t;
|
|
using std::vector;
|
|
|
|
#if defined(__x86_64__)
|
|
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
|
|
low = mul128(a, b, &high);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
|
|
// __int128 isn't part of the standard, so the previous function wasn't portable. mul128() in Windows is fine,
|
|
// but this portable function should be used elsewhere. Credit for this function goes to latexi95.
|
|
|
|
uint64_t aLow = a & 0xFFFFFFFF;
|
|
uint64_t aHigh = a >> 32;
|
|
uint64_t bLow = b & 0xFFFFFFFF;
|
|
uint64_t bHigh = b >> 32;
|
|
|
|
uint64_t res = aLow * bLow;
|
|
uint64_t lowRes1 = res & 0xFFFFFFFF;
|
|
uint64_t carry = res >> 32;
|
|
|
|
res = aHigh * bLow + carry;
|
|
uint64_t highResHigh1 = res >> 32;
|
|
uint64_t highResLow1 = res & 0xFFFFFFFF;
|
|
|
|
res = aLow * bHigh;
|
|
uint64_t lowRes2 = res & 0xFFFFFFFF;
|
|
carry = res >> 32;
|
|
|
|
res = aHigh * bHigh + carry;
|
|
uint64_t highResHigh2 = res >> 32;
|
|
uint64_t highResLow2 = res & 0xFFFFFFFF;
|
|
|
|
//Addition
|
|
|
|
uint64_t r = highResLow1 + lowRes2;
|
|
carry = r >> 32;
|
|
low = (r << 32) | lowRes1;
|
|
r = highResHigh1 + highResLow2 + carry;
|
|
uint64_t d3 = r & 0xFFFFFFFF;
|
|
carry = r >> 32;
|
|
r = highResHigh2 + carry;
|
|
high = d3 | (r << 32);
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline bool cadd(uint64_t a, uint64_t b) {
|
|
return a + b < a;
|
|
}
|
|
|
|
static inline bool cadc(uint64_t a, uint64_t b, bool c) {
|
|
return a + b < a || (c && a + b == (uint64_t) -1);
|
|
}
|
|
|
|
bool check_hash(const crypto::hash &hash, difficulty_type difficulty) {
|
|
uint64_t low, high, top, cur;
|
|
// First check the highest word, this will most likely fail for a random hash.
|
|
mul(swap64le(((const uint64_t *) &hash)[3]), difficulty, top, high);
|
|
if (high != 0) {
|
|
return false;
|
|
}
|
|
mul(swap64le(((const uint64_t *) &hash)[0]), difficulty, low, cur);
|
|
mul(swap64le(((const uint64_t *) &hash)[1]), difficulty, low, high);
|
|
bool carry = cadd(cur, low);
|
|
cur = high;
|
|
mul(swap64le(((const uint64_t *) &hash)[2]), difficulty, low, high);
|
|
carry = cadc(cur, low, carry);
|
|
carry = cadc(high, top, carry);
|
|
return !carry;
|
|
}
|
|
|
|
difficulty_type next_difficulty(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds) {
|
|
|
|
if(timestamps.size() > DIFFICULTY_WINDOW)
|
|
{
|
|
timestamps.resize(DIFFICULTY_WINDOW);
|
|
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
|
|
}
|
|
|
|
|
|
size_t length = timestamps.size();
|
|
assert(length == cumulative_difficulties.size());
|
|
if (length <= 1) {
|
|
return 1;
|
|
}
|
|
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
|
|
assert(length <= DIFFICULTY_WINDOW);
|
|
sort(timestamps.begin(), timestamps.end());
|
|
size_t cut_begin, cut_end;
|
|
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
|
|
if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
|
|
cut_begin = 0;
|
|
cut_end = length;
|
|
} else {
|
|
cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
|
|
cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
|
|
}
|
|
assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
|
|
uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
|
|
if (time_span == 0) {
|
|
time_span = 1;
|
|
}
|
|
difficulty_type total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
|
|
assert(total_work > 0);
|
|
uint64_t low, high;
|
|
mul(total_work, target_seconds, low, high);
|
|
// blockchain errors "difficulty overhead" if this function returns zero.
|
|
// TODO: consider throwing an exception instead
|
|
if (high != 0 || low + time_span - 1 < low) {
|
|
return 0;
|
|
}
|
|
return (low + time_span - 1) / time_span;
|
|
}
|
|
|
|
}
|