monero/contrib/epee/include/serialization/wire/field.h
2024-05-21 16:29:33 +00:00

142 lines
5.8 KiB
C++

// Copyright (c) 2021-2024, The Monero Project
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <functional>
#include <utility>
#include "serialization/wire/traits.h"
//! A required field has the same key name and C/C++ name
#define WIRE_FIELD(name) \
::wire::field( #name , std::ref( self . name ))
//! A required field has the same key name and C/C++ name AND is cheap to copy (faster output).
#define WIRE_FIELD_COPY(name) \
::wire::field( #name , self . name )
//! The optional field has the same key name and C/C++ name
#define WIRE_OPTIONAL_FIELD(name) \
::wire::optional_field( #name , std::ref( self . name ))
namespace wire
{
/*! Links `name` to a `value` for object serialization.
`value_type` is `T` with optional `std::reference_wrapper` removed.
`value_type` needs a `read_bytes` function when parsing with a
`wire::reader` - see `read.h` for more info. `value_type` needs a
`write_bytes` function when writing with a `wire::writer` - see `write.h`
for more info.
Any `value_type` where `is_optional_on_empty<value_type> == true`, will
automatically be converted to an optional field iff `value_type` has an
`empty()` method that returns `true`. The old output engine omitted fields
when an array was empty, and the standard input macro would ignore the
`false` return for the missing field. For compability reasons, the
input/output engine here matches that behavior. See `wrapper/array.h` to
enforce a required field even when the array is empty or specialize the
`is_optional_on_empty` trait. Only new fields should use this behavior.
Additional concept requirements for `value_type` when `Required == false`:
* must have an `operator*()` function.
* must have a conversion to bool function that returns true when
`operator*()` is safe to call (and implicitly when the associated field
should be written as opposed to skipped/omitted).
Additional concept requirements for `value_type` when `Required == false`
when reading:
* must have an `emplace()` method that ensures `operator*()` is safe to call.
* must have a `reset()` method to indicate a field was skipped/omitted.
If a standard type needs custom serialization, one "trick":
```
struct custom_tag{};
void read_bytes(wire::reader&, boost::fusion::pair<custom_tag, std::string&>)
{ ... }
void write_bytes(wire::writer&, boost::fusion::pair<custom_tag, const std::string&>)
{ ... }
template<typename F, typename T>
void object_map(F& format, T& self)
{
wire::object(format,
wire::field("foo", boost::fusion::make_pair<custom_tag>(std::ref(self.foo)))
);
}
```
Basically each input/output format needs a unique type so that the compiler
knows how to "dispatch" the read/write calls. */
template<typename T, bool Required>
struct field_
{
using value_type = unwrap_reference_t<T>;
//! \return True if field is forced optional when `get_value().empty()`.
static constexpr bool optional_on_empty() noexcept
{ return is_optional_on_empty<value_type>::value; }
static constexpr bool is_required() noexcept { return Required && !optional_on_empty(); }
static constexpr std::size_t count() noexcept { return 1; }
const char* name;
T value;
constexpr const value_type& get_value() const noexcept { return value; }
value_type& get_value() noexcept { return value; }
};
//! Links `name` to `value`. Use `std::ref` if de-serializing.
template<typename T>
constexpr inline field_<T, true> field(const char* name, T value)
{
return {name, std::move(value)};
}
//! Links `name` to optional `value`. Use `std::ref` if de-serializing.
template<typename T>
constexpr inline field_<T, false> optional_field(const char* name, T value)
{
return {name, std::move(value)};
}
template<typename T>
inline constexpr bool available(const field_<T, true>& elem)
{
/* The old output engine always skipped fields when it was an empty array,
this follows that behavior. See comments for `field_`. */
return elem.is_required() || (elem.optional_on_empty() && !wire::empty(elem.get_value()));
}
template<typename T>
inline constexpr bool available(const field_<T, false>& elem)
{
return bool(elem.get_value());
}
} // wire