mirror of
https://github.com/monero-project/monero.git
synced 2024-10-01 11:49:47 -04:00
a85b5759f3
These files were pulled from the 1.6.3 release tarball. This new version builds against OpenSSL version 1.1 which will be the default in the new Debian Stable which is due to be released RealSoonNow (tm).
1452 lines
41 KiB
C
1452 lines
41 KiB
C
/*
|
|
* validator/val_sigcrypt.c - validator signature crypto functions.
|
|
*
|
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This file contains helper functions for the validator module.
|
|
* The functions help with signature verification and checking, the
|
|
* bridging between RR wireformat data and crypto calls.
|
|
*/
|
|
#include "config.h"
|
|
#include "validator/val_sigcrypt.h"
|
|
#include "validator/val_secalgo.h"
|
|
#include "validator/validator.h"
|
|
#include "util/data/msgreply.h"
|
|
#include "util/data/msgparse.h"
|
|
#include "util/data/dname.h"
|
|
#include "util/rbtree.h"
|
|
#include "util/module.h"
|
|
#include "util/net_help.h"
|
|
#include "util/regional.h"
|
|
#include "util/config_file.h"
|
|
#include "sldns/keyraw.h"
|
|
#include "sldns/sbuffer.h"
|
|
#include "sldns/parseutil.h"
|
|
#include "sldns/wire2str.h"
|
|
|
|
#include <ctype.h>
|
|
#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
|
|
#error "Need crypto library to do digital signature cryptography"
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_ERR_H
|
|
#include <openssl/err.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_RAND_H
|
|
#include <openssl/rand.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_CONF_H
|
|
#include <openssl/conf.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_ENGINE_H
|
|
#include <openssl/engine.h>
|
|
#endif
|
|
|
|
/** return number of rrs in an rrset */
|
|
static size_t
|
|
rrset_get_count(struct ub_packed_rrset_key* rrset)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)
|
|
rrset->entry.data;
|
|
if(!d) return 0;
|
|
return d->count;
|
|
}
|
|
|
|
/**
|
|
* Get RR signature count
|
|
*/
|
|
static size_t
|
|
rrset_get_sigcount(struct ub_packed_rrset_key* k)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
return d->rrsig_count;
|
|
}
|
|
|
|
/**
|
|
* Get signature keytag value
|
|
* @param k: rrset (with signatures)
|
|
* @param sig_idx: signature index.
|
|
* @return keytag or 0 if malformed rrsig.
|
|
*/
|
|
static uint16_t
|
|
rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx)
|
|
{
|
|
uint16_t t;
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
log_assert(sig_idx < d->rrsig_count);
|
|
if(d->rr_len[d->count + sig_idx] < 2+18)
|
|
return 0;
|
|
memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2);
|
|
return ntohs(t);
|
|
}
|
|
|
|
/**
|
|
* Get signature signing algorithm value
|
|
* @param k: rrset (with signatures)
|
|
* @param sig_idx: signature index.
|
|
* @return algo or 0 if malformed rrsig.
|
|
*/
|
|
static int
|
|
rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
log_assert(sig_idx < d->rrsig_count);
|
|
if(d->rr_len[d->count + sig_idx] < 2+3)
|
|
return 0;
|
|
return (int)d->rr_data[d->count + sig_idx][2+2];
|
|
}
|
|
|
|
/** get rdata pointer and size */
|
|
static void
|
|
rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata,
|
|
size_t* len)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
log_assert(d && idx < (d->count + d->rrsig_count));
|
|
*rdata = d->rr_data[idx];
|
|
*len = d->rr_len[idx];
|
|
}
|
|
|
|
uint16_t
|
|
dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
uint16_t f;
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
if(len < 2+2)
|
|
return 0;
|
|
memmove(&f, rdata+2, 2);
|
|
f = ntohs(f);
|
|
return f;
|
|
}
|
|
|
|
/**
|
|
* Get DNSKEY protocol value from rdata
|
|
* @param k: DNSKEY rrset.
|
|
* @param idx: which key.
|
|
* @return protocol octet value
|
|
*/
|
|
static int
|
|
dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
if(len < 2+4)
|
|
return 0;
|
|
return (int)rdata[2+2];
|
|
}
|
|
|
|
int
|
|
dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
if(len < 2+4)
|
|
return 0;
|
|
return (int)rdata[2+3];
|
|
}
|
|
|
|
/** get public key rdata field from a dnskey RR and do some checks */
|
|
static void
|
|
dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx,
|
|
unsigned char** pk, unsigned int* pklen)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
if(len < 2+5) {
|
|
*pk = NULL;
|
|
*pklen = 0;
|
|
return;
|
|
}
|
|
*pk = (unsigned char*)rdata+2+4;
|
|
*pklen = (unsigned)len-2-4;
|
|
}
|
|
|
|
int
|
|
ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
if(len < 2+3)
|
|
return 0;
|
|
return (int)rdata[2+2];
|
|
}
|
|
|
|
int
|
|
ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
if(len < 2+4)
|
|
return 0;
|
|
return (int)rdata[2+3];
|
|
}
|
|
|
|
uint16_t
|
|
ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
|
|
{
|
|
uint16_t t;
|
|
uint8_t* rdata;
|
|
size_t len;
|
|
rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len);
|
|
if(len < 2+2)
|
|
return 0;
|
|
memmove(&t, rdata+2, 2);
|
|
return ntohs(t);
|
|
}
|
|
|
|
/**
|
|
* Return pointer to the digest in a DS RR.
|
|
* @param k: DS rrset.
|
|
* @param idx: which DS.
|
|
* @param digest: digest data is returned.
|
|
* on error, this is NULL.
|
|
* @param len: length of digest is returned.
|
|
* on error, the length is 0.
|
|
*/
|
|
static void
|
|
ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest,
|
|
size_t* len)
|
|
{
|
|
uint8_t* rdata;
|
|
size_t rdlen;
|
|
rrset_get_rdata(k, idx, &rdata, &rdlen);
|
|
if(rdlen < 2+5) {
|
|
*digest = NULL;
|
|
*len = 0;
|
|
return;
|
|
}
|
|
*digest = rdata + 2 + 4;
|
|
*len = rdlen - 2 - 4;
|
|
}
|
|
|
|
/**
|
|
* Return size of DS digest according to its hash algorithm.
|
|
* @param k: DS rrset.
|
|
* @param idx: which DS.
|
|
* @return size in bytes of digest, or 0 if not supported.
|
|
*/
|
|
static size_t
|
|
ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
{
|
|
return ds_digest_size_supported(ds_get_digest_algo(k, idx));
|
|
}
|
|
|
|
/**
|
|
* Create a DS digest for a DNSKEY entry.
|
|
*
|
|
* @param env: module environment. Uses scratch space.
|
|
* @param dnskey_rrset: DNSKEY rrset.
|
|
* @param dnskey_idx: index of RR in rrset.
|
|
* @param ds_rrset: DS rrset
|
|
* @param ds_idx: index of RR in DS rrset.
|
|
* @param digest: digest is returned in here (must be correctly sized).
|
|
* @return false on error.
|
|
*/
|
|
static int
|
|
ds_create_dnskey_digest(struct module_env* env,
|
|
struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
|
|
struct ub_packed_rrset_key* ds_rrset, size_t ds_idx,
|
|
uint8_t* digest)
|
|
{
|
|
sldns_buffer* b = env->scratch_buffer;
|
|
uint8_t* dnskey_rdata;
|
|
size_t dnskey_len;
|
|
rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len);
|
|
|
|
/* create digest source material in buffer
|
|
* digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
|
|
* DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */
|
|
sldns_buffer_clear(b);
|
|
sldns_buffer_write(b, dnskey_rrset->rk.dname,
|
|
dnskey_rrset->rk.dname_len);
|
|
query_dname_tolower(sldns_buffer_begin(b));
|
|
sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/
|
|
sldns_buffer_flip(b);
|
|
|
|
return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx),
|
|
(unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b),
|
|
(unsigned char*)digest);
|
|
}
|
|
|
|
int ds_digest_match_dnskey(struct module_env* env,
|
|
struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
|
|
struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
|
|
{
|
|
uint8_t* ds; /* DS digest */
|
|
size_t dslen;
|
|
uint8_t* digest; /* generated digest */
|
|
size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx);
|
|
|
|
if(digestlen == 0) {
|
|
verbose(VERB_QUERY, "DS fail: not supported, or DS RR "
|
|
"format error");
|
|
return 0; /* not supported, or DS RR format error */
|
|
}
|
|
#ifndef USE_SHA1
|
|
if(fake_sha1 && ds_get_digest_algo(ds_rrset, ds_idx)==LDNS_SHA1)
|
|
return 1;
|
|
#endif
|
|
|
|
/* check digest length in DS with length from hash function */
|
|
ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen);
|
|
if(!ds || dslen != digestlen) {
|
|
verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not "
|
|
"match each other");
|
|
return 0; /* DS algorithm and digest do not match */
|
|
}
|
|
|
|
digest = regional_alloc(env->scratch, digestlen);
|
|
if(!digest) {
|
|
verbose(VERB_QUERY, "DS fail: out of memory");
|
|
return 0; /* mem error */
|
|
}
|
|
if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset,
|
|
ds_idx, digest)) {
|
|
verbose(VERB_QUERY, "DS fail: could not calc key digest");
|
|
return 0; /* digest algo failed */
|
|
}
|
|
if(memcmp(digest, ds, dslen) != 0) {
|
|
verbose(VERB_QUERY, "DS fail: digest is different");
|
|
return 0; /* digest different */
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
|
|
size_t ds_idx)
|
|
{
|
|
return (ds_digest_size_algo(ds_rrset, ds_idx) != 0);
|
|
}
|
|
|
|
int
|
|
ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
|
|
size_t ds_idx)
|
|
{
|
|
return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx));
|
|
}
|
|
|
|
uint16_t
|
|
dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx)
|
|
{
|
|
uint8_t* data;
|
|
size_t len;
|
|
rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len);
|
|
/* do not pass rdatalen to ldns */
|
|
return sldns_calc_keytag_raw(data+2, len-2);
|
|
}
|
|
|
|
int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset,
|
|
size_t dnskey_idx)
|
|
{
|
|
return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset,
|
|
dnskey_idx));
|
|
}
|
|
|
|
void algo_needs_init_dnskey_add(struct algo_needs* n,
|
|
struct ub_packed_rrset_key* dnskey, uint8_t* sigalg)
|
|
{
|
|
uint8_t algo;
|
|
size_t i, total = n->num;
|
|
size_t num = rrset_get_count(dnskey);
|
|
|
|
for(i=0; i<num; i++) {
|
|
algo = (uint8_t)dnskey_get_algo(dnskey, i);
|
|
if(!dnskey_algo_id_is_supported((int)algo))
|
|
continue;
|
|
if(n->needs[algo] == 0) {
|
|
n->needs[algo] = 1;
|
|
sigalg[total] = algo;
|
|
total++;
|
|
}
|
|
}
|
|
sigalg[total] = 0;
|
|
n->num = total;
|
|
}
|
|
|
|
void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg)
|
|
{
|
|
uint8_t algo;
|
|
size_t total = 0;
|
|
|
|
memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
|
|
while( (algo=*sigalg++) != 0) {
|
|
log_assert(dnskey_algo_id_is_supported((int)algo));
|
|
log_assert(n->needs[algo] == 0);
|
|
n->needs[algo] = 1;
|
|
total++;
|
|
}
|
|
n->num = total;
|
|
}
|
|
|
|
void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds,
|
|
int fav_ds_algo, uint8_t* sigalg)
|
|
{
|
|
uint8_t algo;
|
|
size_t i, total = 0;
|
|
size_t num = rrset_get_count(ds);
|
|
|
|
memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
|
|
for(i=0; i<num; i++) {
|
|
if(ds_get_digest_algo(ds, i) != fav_ds_algo)
|
|
continue;
|
|
algo = (uint8_t)ds_get_key_algo(ds, i);
|
|
if(!dnskey_algo_id_is_supported((int)algo))
|
|
continue;
|
|
log_assert(algo != 0); /* we do not support 0 and is EOS */
|
|
if(n->needs[algo] == 0) {
|
|
n->needs[algo] = 1;
|
|
sigalg[total] = algo;
|
|
total++;
|
|
}
|
|
}
|
|
sigalg[total] = 0;
|
|
n->num = total;
|
|
}
|
|
|
|
int algo_needs_set_secure(struct algo_needs* n, uint8_t algo)
|
|
{
|
|
if(n->needs[algo]) {
|
|
n->needs[algo] = 0;
|
|
n->num --;
|
|
if(n->num == 0) /* done! */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo)
|
|
{
|
|
if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */
|
|
}
|
|
|
|
size_t algo_needs_num_missing(struct algo_needs* n)
|
|
{
|
|
return n->num;
|
|
}
|
|
|
|
int algo_needs_missing(struct algo_needs* n)
|
|
{
|
|
int i;
|
|
/* first check if a needed algo was bogus - report that */
|
|
for(i=0; i<ALGO_NEEDS_MAX; i++)
|
|
if(n->needs[i] == 2)
|
|
return 0;
|
|
/* now check which algo is missing */
|
|
for(i=0; i<ALGO_NEEDS_MAX; i++)
|
|
if(n->needs[i] == 1)
|
|
return i;
|
|
return 0;
|
|
}
|
|
|
|
enum sec_status
|
|
dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve,
|
|
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
|
|
uint8_t* sigalg, char** reason)
|
|
{
|
|
enum sec_status sec;
|
|
size_t i, num;
|
|
rbtree_type* sortree = NULL;
|
|
/* make sure that for all DNSKEY algorithms there are valid sigs */
|
|
struct algo_needs needs;
|
|
int alg;
|
|
|
|
num = rrset_get_sigcount(rrset);
|
|
if(num == 0) {
|
|
verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
|
|
"signatures");
|
|
*reason = "no signatures";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
if(sigalg) {
|
|
algo_needs_init_list(&needs, sigalg);
|
|
if(algo_needs_num_missing(&needs) == 0) {
|
|
verbose(VERB_QUERY, "zone has no known algorithms");
|
|
*reason = "zone has no known algorithms";
|
|
return sec_status_insecure;
|
|
}
|
|
}
|
|
for(i=0; i<num; i++) {
|
|
sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset,
|
|
dnskey, i, &sortree, reason);
|
|
/* see which algorithm has been fixed up */
|
|
if(sec == sec_status_secure) {
|
|
if(!sigalg)
|
|
return sec; /* done! */
|
|
else if(algo_needs_set_secure(&needs,
|
|
(uint8_t)rrset_get_sig_algo(rrset, i)))
|
|
return sec; /* done! */
|
|
} else if(sigalg && sec == sec_status_bogus) {
|
|
algo_needs_set_bogus(&needs,
|
|
(uint8_t)rrset_get_sig_algo(rrset, i));
|
|
}
|
|
}
|
|
if(sigalg && (alg=algo_needs_missing(&needs)) != 0) {
|
|
verbose(VERB_ALGO, "rrset failed to verify: "
|
|
"no valid signatures for %d algorithms",
|
|
(int)algo_needs_num_missing(&needs));
|
|
algo_needs_reason(env, alg, reason, "no signatures");
|
|
} else {
|
|
verbose(VERB_ALGO, "rrset failed to verify: "
|
|
"no valid signatures");
|
|
}
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s)
|
|
{
|
|
char buf[256];
|
|
sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg);
|
|
if(t&&t->name)
|
|
snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name);
|
|
else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s,
|
|
(unsigned)alg);
|
|
*reason = regional_strdup(env->scratch, buf);
|
|
if(!*reason)
|
|
*reason = s;
|
|
}
|
|
|
|
enum sec_status
|
|
dnskey_verify_rrset(struct module_env* env, struct val_env* ve,
|
|
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
|
|
size_t dnskey_idx, char** reason)
|
|
{
|
|
enum sec_status sec;
|
|
size_t i, num, numchecked = 0;
|
|
rbtree_type* sortree = NULL;
|
|
int buf_canon = 0;
|
|
uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx);
|
|
int algo = dnskey_get_algo(dnskey, dnskey_idx);
|
|
|
|
num = rrset_get_sigcount(rrset);
|
|
if(num == 0) {
|
|
verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
|
|
"signatures");
|
|
*reason = "no signatures";
|
|
return sec_status_bogus;
|
|
}
|
|
for(i=0; i<num; i++) {
|
|
/* see if sig matches keytag and algo */
|
|
if(algo != rrset_get_sig_algo(rrset, i) ||
|
|
tag != rrset_get_sig_keytag(rrset, i))
|
|
continue;
|
|
buf_canon = 0;
|
|
sec = dnskey_verify_rrset_sig(env->scratch,
|
|
env->scratch_buffer, ve, *env->now, rrset,
|
|
dnskey, dnskey_idx, i, &sortree, &buf_canon, reason);
|
|
if(sec == sec_status_secure)
|
|
return sec;
|
|
numchecked ++;
|
|
}
|
|
verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus");
|
|
if(!numchecked) *reason = "signature missing";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
enum sec_status
|
|
dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve,
|
|
time_t now, struct ub_packed_rrset_key* rrset,
|
|
struct ub_packed_rrset_key* dnskey, size_t sig_idx,
|
|
struct rbtree_type** sortree, char** reason)
|
|
{
|
|
/* find matching keys and check them */
|
|
enum sec_status sec = sec_status_bogus;
|
|
uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx);
|
|
int algo = rrset_get_sig_algo(rrset, sig_idx);
|
|
size_t i, num = rrset_get_count(dnskey);
|
|
size_t numchecked = 0;
|
|
int buf_canon = 0;
|
|
verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo);
|
|
if(!dnskey_algo_id_is_supported(algo)) {
|
|
verbose(VERB_QUERY, "verify sig: unknown algorithm");
|
|
return sec_status_insecure;
|
|
}
|
|
|
|
for(i=0; i<num; i++) {
|
|
/* see if key matches keytag and algo */
|
|
if(algo != dnskey_get_algo(dnskey, i) ||
|
|
tag != dnskey_calc_keytag(dnskey, i))
|
|
continue;
|
|
numchecked ++;
|
|
|
|
/* see if key verifies */
|
|
sec = dnskey_verify_rrset_sig(env->scratch,
|
|
env->scratch_buffer, ve, now, rrset, dnskey, i,
|
|
sig_idx, sortree, &buf_canon, reason);
|
|
if(sec == sec_status_secure)
|
|
return sec;
|
|
}
|
|
if(numchecked == 0) {
|
|
*reason = "signatures from unknown keys";
|
|
verbose(VERB_QUERY, "verify: could not find appropriate key");
|
|
return sec_status_bogus;
|
|
}
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
/**
|
|
* RR entries in a canonical sorted tree of RRs
|
|
*/
|
|
struct canon_rr {
|
|
/** rbtree node, key is this structure */
|
|
rbnode_type node;
|
|
/** rrset the RR is in */
|
|
struct ub_packed_rrset_key* rrset;
|
|
/** which RR in the rrset */
|
|
size_t rr_idx;
|
|
};
|
|
|
|
/**
|
|
* Compare two RR for canonical order, in a field-style sweep.
|
|
* @param d: rrset data
|
|
* @param desc: ldns wireformat descriptor.
|
|
* @param i: first RR to compare
|
|
* @param j: first RR to compare
|
|
* @return comparison code.
|
|
*/
|
|
static int
|
|
canonical_compare_byfield(struct packed_rrset_data* d,
|
|
const sldns_rr_descriptor* desc, size_t i, size_t j)
|
|
{
|
|
/* sweep across rdata, keep track of some state:
|
|
* which rr field, and bytes left in field.
|
|
* current position in rdata, length left.
|
|
* are we in a dname, length left in a label.
|
|
*/
|
|
int wfi = -1; /* current wireformat rdata field (rdf) */
|
|
int wfj = -1;
|
|
uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */
|
|
uint8_t* dj = d->rr_data[j]+2;
|
|
size_t ilen = d->rr_len[i]-2; /* length left in rdata */
|
|
size_t jlen = d->rr_len[j]-2;
|
|
int dname_i = 0; /* true if these bytes are part of a name */
|
|
int dname_j = 0;
|
|
size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/
|
|
size_t lablen_j = 0; /* otherwise remaining length of rdf or label */
|
|
int dname_num_i = (int)desc->_dname_count; /* decreased at root label */
|
|
int dname_num_j = (int)desc->_dname_count;
|
|
|
|
/* loop while there are rdata bytes available for both rrs,
|
|
* and still some lowercasing needs to be done; either the dnames
|
|
* have not been reached yet, or they are currently being processed */
|
|
while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) {
|
|
/* compare these two bytes */
|
|
/* lowercase if in a dname and not a label length byte */
|
|
if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
|
|
!= ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)
|
|
) {
|
|
if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
|
|
< ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj))
|
|
return -1;
|
|
return 1;
|
|
}
|
|
ilen--;
|
|
jlen--;
|
|
/* bytes are equal */
|
|
|
|
/* advance field i */
|
|
/* lablen 0 means that this byte is the first byte of the
|
|
* next rdata field; inspect this rdata field and setup
|
|
* to process the rest of this rdata field.
|
|
* The reason to first read the byte, then setup the rdf,
|
|
* is that we are then sure the byte is available and short
|
|
* rdata is handled gracefully (even if it is a formerr). */
|
|
if(lablen_i == 0) {
|
|
if(dname_i) {
|
|
/* scan this dname label */
|
|
/* capture length to lowercase */
|
|
lablen_i = (size_t)*di;
|
|
if(lablen_i == 0) {
|
|
/* end root label */
|
|
dname_i = 0;
|
|
dname_num_i--;
|
|
/* if dname num is 0, then the
|
|
* remainder is binary only */
|
|
if(dname_num_i == 0)
|
|
lablen_i = ilen;
|
|
}
|
|
} else {
|
|
/* scan this rdata field */
|
|
wfi++;
|
|
if(desc->_wireformat[wfi]
|
|
== LDNS_RDF_TYPE_DNAME) {
|
|
dname_i = 1;
|
|
lablen_i = (size_t)*di;
|
|
if(lablen_i == 0) {
|
|
dname_i = 0;
|
|
dname_num_i--;
|
|
if(dname_num_i == 0)
|
|
lablen_i = ilen;
|
|
}
|
|
} else if(desc->_wireformat[wfi]
|
|
== LDNS_RDF_TYPE_STR)
|
|
lablen_i = (size_t)*di;
|
|
else lablen_i = get_rdf_size(
|
|
desc->_wireformat[wfi]) - 1;
|
|
}
|
|
} else lablen_i--;
|
|
|
|
/* advance field j; same as for i */
|
|
if(lablen_j == 0) {
|
|
if(dname_j) {
|
|
lablen_j = (size_t)*dj;
|
|
if(lablen_j == 0) {
|
|
dname_j = 0;
|
|
dname_num_j--;
|
|
if(dname_num_j == 0)
|
|
lablen_j = jlen;
|
|
}
|
|
} else {
|
|
wfj++;
|
|
if(desc->_wireformat[wfj]
|
|
== LDNS_RDF_TYPE_DNAME) {
|
|
dname_j = 1;
|
|
lablen_j = (size_t)*dj;
|
|
if(lablen_j == 0) {
|
|
dname_j = 0;
|
|
dname_num_j--;
|
|
if(dname_num_j == 0)
|
|
lablen_j = jlen;
|
|
}
|
|
} else if(desc->_wireformat[wfj]
|
|
== LDNS_RDF_TYPE_STR)
|
|
lablen_j = (size_t)*dj;
|
|
else lablen_j = get_rdf_size(
|
|
desc->_wireformat[wfj]) - 1;
|
|
}
|
|
} else lablen_j--;
|
|
di++;
|
|
dj++;
|
|
}
|
|
/* end of the loop; because we advanced byte by byte; now we have
|
|
* that the rdata has ended, or that there is a binary remainder */
|
|
/* shortest first */
|
|
if(ilen == 0 && jlen == 0)
|
|
return 0;
|
|
if(ilen == 0)
|
|
return -1;
|
|
if(jlen == 0)
|
|
return 1;
|
|
/* binary remainder, capture comparison in wfi variable */
|
|
if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0)
|
|
return wfi;
|
|
if(ilen < jlen)
|
|
return -1;
|
|
if(jlen < ilen)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Compare two RRs in the same RRset and determine their relative
|
|
* canonical order.
|
|
* @param rrset: the rrset in which to perform compares.
|
|
* @param i: first RR to compare
|
|
* @param j: first RR to compare
|
|
* @return 0 if RR i== RR j, -1 if <, +1 if >.
|
|
*/
|
|
static int
|
|
canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)
|
|
rrset->entry.data;
|
|
const sldns_rr_descriptor* desc;
|
|
uint16_t type = ntohs(rrset->rk.type);
|
|
size_t minlen;
|
|
int c;
|
|
|
|
if(i==j)
|
|
return 0;
|
|
|
|
switch(type) {
|
|
/* These RR types have only a name as RDATA.
|
|
* This name has to be canonicalized.*/
|
|
case LDNS_RR_TYPE_NS:
|
|
case LDNS_RR_TYPE_MD:
|
|
case LDNS_RR_TYPE_MF:
|
|
case LDNS_RR_TYPE_CNAME:
|
|
case LDNS_RR_TYPE_MB:
|
|
case LDNS_RR_TYPE_MG:
|
|
case LDNS_RR_TYPE_MR:
|
|
case LDNS_RR_TYPE_PTR:
|
|
case LDNS_RR_TYPE_DNAME:
|
|
/* the wireread function has already checked these
|
|
* dname's for correctness, and this double checks */
|
|
if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) ||
|
|
!dname_valid(d->rr_data[j]+2, d->rr_len[j]-2))
|
|
return 0;
|
|
return query_dname_compare(d->rr_data[i]+2,
|
|
d->rr_data[j]+2);
|
|
|
|
/* These RR types have STR and fixed size rdata fields
|
|
* before one or more name fields that need canonicalizing,
|
|
* and after that a byte-for byte remainder can be compared.
|
|
*/
|
|
/* type starts with the name; remainder is binary compared */
|
|
case LDNS_RR_TYPE_NXT:
|
|
/* use rdata field formats */
|
|
case LDNS_RR_TYPE_MINFO:
|
|
case LDNS_RR_TYPE_RP:
|
|
case LDNS_RR_TYPE_SOA:
|
|
case LDNS_RR_TYPE_RT:
|
|
case LDNS_RR_TYPE_AFSDB:
|
|
case LDNS_RR_TYPE_KX:
|
|
case LDNS_RR_TYPE_MX:
|
|
case LDNS_RR_TYPE_SIG:
|
|
/* RRSIG signer name has to be downcased */
|
|
case LDNS_RR_TYPE_RRSIG:
|
|
case LDNS_RR_TYPE_PX:
|
|
case LDNS_RR_TYPE_NAPTR:
|
|
case LDNS_RR_TYPE_SRV:
|
|
desc = sldns_rr_descript(type);
|
|
log_assert(desc);
|
|
/* this holds for the types that need canonicalizing */
|
|
log_assert(desc->_minimum == desc->_maximum);
|
|
return canonical_compare_byfield(d, desc, i, j);
|
|
|
|
case LDNS_RR_TYPE_HINFO: /* no longer downcased */
|
|
case LDNS_RR_TYPE_NSEC:
|
|
default:
|
|
/* For unknown RR types, or types not listed above,
|
|
* no canonicalization is needed, do binary compare */
|
|
/* byte for byte compare, equal means shortest first*/
|
|
minlen = d->rr_len[i]-2;
|
|
if(minlen > d->rr_len[j]-2)
|
|
minlen = d->rr_len[j]-2;
|
|
c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen);
|
|
if(c!=0)
|
|
return c;
|
|
/* rdata equal, shortest is first */
|
|
if(d->rr_len[i] < d->rr_len[j])
|
|
return -1;
|
|
if(d->rr_len[i] > d->rr_len[j])
|
|
return 1;
|
|
/* rdata equal, length equal */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
canonical_tree_compare(const void* k1, const void* k2)
|
|
{
|
|
struct canon_rr* r1 = (struct canon_rr*)k1;
|
|
struct canon_rr* r2 = (struct canon_rr*)k2;
|
|
log_assert(r1->rrset == r2->rrset);
|
|
return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx);
|
|
}
|
|
|
|
/**
|
|
* Sort RRs for rrset in canonical order.
|
|
* Does not actually canonicalize the RR rdatas.
|
|
* Does not touch rrsigs.
|
|
* @param rrset: to sort.
|
|
* @param d: rrset data.
|
|
* @param sortree: tree to sort into.
|
|
* @param rrs: rr storage.
|
|
*/
|
|
static void
|
|
canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d,
|
|
rbtree_type* sortree, struct canon_rr* rrs)
|
|
{
|
|
size_t i;
|
|
/* insert into rbtree to sort and detect duplicates */
|
|
for(i=0; i<d->count; i++) {
|
|
rrs[i].node.key = &rrs[i];
|
|
rrs[i].rrset = rrset;
|
|
rrs[i].rr_idx = i;
|
|
if(!rbtree_insert(sortree, &rrs[i].node)) {
|
|
/* this was a duplicate */
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Inser canonical owner name into buffer.
|
|
* @param buf: buffer to insert into at current position.
|
|
* @param k: rrset with its owner name.
|
|
* @param sig: signature with signer name and label count.
|
|
* must be length checked, at least 18 bytes long.
|
|
* @param can_owner: position in buffer returned for future use.
|
|
* @param can_owner_len: length of canonical owner name.
|
|
*/
|
|
static void
|
|
insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k,
|
|
uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len)
|
|
{
|
|
int rrsig_labels = (int)sig[3];
|
|
int fqdn_labels = dname_signame_label_count(k->rk.dname);
|
|
*can_owner = sldns_buffer_current(buf);
|
|
if(rrsig_labels == fqdn_labels) {
|
|
/* no change */
|
|
sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len);
|
|
query_dname_tolower(*can_owner);
|
|
*can_owner_len = k->rk.dname_len;
|
|
return;
|
|
}
|
|
log_assert(rrsig_labels < fqdn_labels);
|
|
/* *. | fqdn(rightmost rrsig_labels) */
|
|
if(rrsig_labels < fqdn_labels) {
|
|
int i;
|
|
uint8_t* nm = k->rk.dname;
|
|
size_t len = k->rk.dname_len;
|
|
/* so skip fqdn_labels-rrsig_labels */
|
|
for(i=0; i<fqdn_labels-rrsig_labels; i++) {
|
|
dname_remove_label(&nm, &len);
|
|
}
|
|
*can_owner_len = len+2;
|
|
sldns_buffer_write(buf, (uint8_t*)"\001*", 2);
|
|
sldns_buffer_write(buf, nm, len);
|
|
query_dname_tolower(*can_owner);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Canonicalize Rdata in buffer.
|
|
* @param buf: buffer at position just after the rdata.
|
|
* @param rrset: rrset with type.
|
|
* @param len: length of the rdata (including rdatalen uint16).
|
|
*/
|
|
static void
|
|
canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset,
|
|
size_t len)
|
|
{
|
|
uint8_t* datstart = sldns_buffer_current(buf)-len+2;
|
|
switch(ntohs(rrset->rk.type)) {
|
|
case LDNS_RR_TYPE_NXT:
|
|
case LDNS_RR_TYPE_NS:
|
|
case LDNS_RR_TYPE_MD:
|
|
case LDNS_RR_TYPE_MF:
|
|
case LDNS_RR_TYPE_CNAME:
|
|
case LDNS_RR_TYPE_MB:
|
|
case LDNS_RR_TYPE_MG:
|
|
case LDNS_RR_TYPE_MR:
|
|
case LDNS_RR_TYPE_PTR:
|
|
case LDNS_RR_TYPE_DNAME:
|
|
/* type only has a single argument, the name */
|
|
query_dname_tolower(datstart);
|
|
return;
|
|
case LDNS_RR_TYPE_MINFO:
|
|
case LDNS_RR_TYPE_RP:
|
|
case LDNS_RR_TYPE_SOA:
|
|
/* two names after another */
|
|
query_dname_tolower(datstart);
|
|
query_dname_tolower(datstart +
|
|
dname_valid(datstart, len-2));
|
|
return;
|
|
case LDNS_RR_TYPE_RT:
|
|
case LDNS_RR_TYPE_AFSDB:
|
|
case LDNS_RR_TYPE_KX:
|
|
case LDNS_RR_TYPE_MX:
|
|
/* skip fixed part */
|
|
if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */
|
|
return;
|
|
datstart += 2;
|
|
query_dname_tolower(datstart);
|
|
return;
|
|
case LDNS_RR_TYPE_SIG:
|
|
/* downcase the RRSIG, compat with BIND (kept it from SIG) */
|
|
case LDNS_RR_TYPE_RRSIG:
|
|
/* skip fixed part */
|
|
if(len < 2+18+1)
|
|
return;
|
|
datstart += 18;
|
|
query_dname_tolower(datstart);
|
|
return;
|
|
case LDNS_RR_TYPE_PX:
|
|
/* skip, then two names after another */
|
|
if(len < 2+2+1)
|
|
return;
|
|
datstart += 2;
|
|
query_dname_tolower(datstart);
|
|
query_dname_tolower(datstart +
|
|
dname_valid(datstart, len-2-2));
|
|
return;
|
|
case LDNS_RR_TYPE_NAPTR:
|
|
if(len < 2+4)
|
|
return;
|
|
len -= 2+4;
|
|
datstart += 4;
|
|
if(len < (size_t)datstart[0]+1) /* skip text field */
|
|
return;
|
|
len -= (size_t)datstart[0]+1;
|
|
datstart += (size_t)datstart[0]+1;
|
|
if(len < (size_t)datstart[0]+1) /* skip text field */
|
|
return;
|
|
len -= (size_t)datstart[0]+1;
|
|
datstart += (size_t)datstart[0]+1;
|
|
if(len < (size_t)datstart[0]+1) /* skip text field */
|
|
return;
|
|
len -= (size_t)datstart[0]+1;
|
|
datstart += (size_t)datstart[0]+1;
|
|
if(len < 1) /* check name is at least 1 byte*/
|
|
return;
|
|
query_dname_tolower(datstart);
|
|
return;
|
|
case LDNS_RR_TYPE_SRV:
|
|
/* skip fixed part */
|
|
if(len < 2+6+1)
|
|
return;
|
|
datstart += 6;
|
|
query_dname_tolower(datstart);
|
|
return;
|
|
|
|
/* do not canonicalize NSEC rdata name, compat with
|
|
* from bind 9.4 signer, where it does not do so */
|
|
case LDNS_RR_TYPE_NSEC: /* type starts with the name */
|
|
case LDNS_RR_TYPE_HINFO: /* not downcased */
|
|
/* A6 not supported */
|
|
default:
|
|
/* nothing to do for unknown types */
|
|
return;
|
|
}
|
|
}
|
|
|
|
int rrset_canonical_equal(struct regional* region,
|
|
struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
|
|
{
|
|
struct rbtree_type sortree1, sortree2;
|
|
struct canon_rr *rrs1, *rrs2, *p1, *p2;
|
|
struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data;
|
|
struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data;
|
|
struct ub_packed_rrset_key fk;
|
|
struct packed_rrset_data fd;
|
|
size_t flen[2];
|
|
uint8_t* fdata[2];
|
|
|
|
/* basic compare */
|
|
if(k1->rk.dname_len != k2->rk.dname_len ||
|
|
k1->rk.flags != k2->rk.flags ||
|
|
k1->rk.type != k2->rk.type ||
|
|
k1->rk.rrset_class != k2->rk.rrset_class ||
|
|
query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
|
|
return 0;
|
|
if(d1->ttl != d2->ttl ||
|
|
d1->count != d2->count ||
|
|
d1->rrsig_count != d2->rrsig_count ||
|
|
d1->trust != d2->trust ||
|
|
d1->security != d2->security)
|
|
return 0;
|
|
|
|
/* init */
|
|
memset(&fk, 0, sizeof(fk));
|
|
memset(&fd, 0, sizeof(fd));
|
|
fk.entry.data = &fd;
|
|
fd.count = 2;
|
|
fd.rr_len = flen;
|
|
fd.rr_data = fdata;
|
|
rbtree_init(&sortree1, &canonical_tree_compare);
|
|
rbtree_init(&sortree2, &canonical_tree_compare);
|
|
if(d1->count > RR_COUNT_MAX || d2->count > RR_COUNT_MAX)
|
|
return 1; /* protection against integer overflow */
|
|
rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count);
|
|
rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count);
|
|
if(!rrs1 || !rrs2) return 1; /* alloc failure */
|
|
|
|
/* sort */
|
|
canonical_sort(k1, d1, &sortree1, rrs1);
|
|
canonical_sort(k2, d2, &sortree2, rrs2);
|
|
|
|
/* compare canonical-sorted RRs for canonical-equality */
|
|
if(sortree1.count != sortree2.count)
|
|
return 0;
|
|
p1 = (struct canon_rr*)rbtree_first(&sortree1);
|
|
p2 = (struct canon_rr*)rbtree_first(&sortree2);
|
|
while(p1 != (struct canon_rr*)RBTREE_NULL &&
|
|
p2 != (struct canon_rr*)RBTREE_NULL) {
|
|
flen[0] = d1->rr_len[p1->rr_idx];
|
|
flen[1] = d2->rr_len[p2->rr_idx];
|
|
fdata[0] = d1->rr_data[p1->rr_idx];
|
|
fdata[1] = d2->rr_data[p2->rr_idx];
|
|
|
|
if(canonical_compare(&fk, 0, 1) != 0)
|
|
return 0;
|
|
p1 = (struct canon_rr*)rbtree_next(&p1->node);
|
|
p2 = (struct canon_rr*)rbtree_next(&p2->node);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Create canonical form of rrset in the scratch buffer.
|
|
* @param region: temporary region.
|
|
* @param buf: the buffer to use.
|
|
* @param k: the rrset to insert.
|
|
* @param sig: RRSIG rdata to include.
|
|
* @param siglen: RRSIG rdata len excluding signature field, but inclusive
|
|
* signer name length.
|
|
* @param sortree: if NULL is passed a new sorted rrset tree is built.
|
|
* Otherwise it is reused.
|
|
* @return false on alloc error.
|
|
*/
|
|
static int
|
|
rrset_canonical(struct regional* region, sldns_buffer* buf,
|
|
struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen,
|
|
struct rbtree_type** sortree)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
uint8_t* can_owner = NULL;
|
|
size_t can_owner_len = 0;
|
|
struct canon_rr* walk;
|
|
struct canon_rr* rrs;
|
|
|
|
if(!*sortree) {
|
|
*sortree = (struct rbtree_type*)regional_alloc(region,
|
|
sizeof(rbtree_type));
|
|
if(!*sortree)
|
|
return 0;
|
|
if(d->count > RR_COUNT_MAX)
|
|
return 0; /* integer overflow protection */
|
|
rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count);
|
|
if(!rrs) {
|
|
*sortree = NULL;
|
|
return 0;
|
|
}
|
|
rbtree_init(*sortree, &canonical_tree_compare);
|
|
canonical_sort(k, d, *sortree, rrs);
|
|
}
|
|
|
|
sldns_buffer_clear(buf);
|
|
sldns_buffer_write(buf, sig, siglen);
|
|
/* canonicalize signer name */
|
|
query_dname_tolower(sldns_buffer_begin(buf)+18);
|
|
RBTREE_FOR(walk, struct canon_rr*, (*sortree)) {
|
|
/* see if there is enough space left in the buffer */
|
|
if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4
|
|
+ d->rr_len[walk->rr_idx]) {
|
|
log_err("verify: failed to canonicalize, "
|
|
"rrset too big");
|
|
return 0;
|
|
}
|
|
/* determine canonical owner name */
|
|
if(can_owner)
|
|
sldns_buffer_write(buf, can_owner, can_owner_len);
|
|
else insert_can_owner(buf, k, sig, &can_owner,
|
|
&can_owner_len);
|
|
sldns_buffer_write(buf, &k->rk.type, 2);
|
|
sldns_buffer_write(buf, &k->rk.rrset_class, 2);
|
|
sldns_buffer_write(buf, sig+4, 4);
|
|
sldns_buffer_write(buf, d->rr_data[walk->rr_idx],
|
|
d->rr_len[walk->rr_idx]);
|
|
canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]);
|
|
}
|
|
sldns_buffer_flip(buf);
|
|
return 1;
|
|
}
|
|
|
|
/** pretty print rrsig error with dates */
|
|
static void
|
|
sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now)
|
|
{
|
|
struct tm tm;
|
|
char expi_buf[16];
|
|
char incep_buf[16];
|
|
char now_buf[16];
|
|
time_t te, ti, tn;
|
|
|
|
if(verbosity < VERB_QUERY)
|
|
return;
|
|
te = (time_t)expi;
|
|
ti = (time_t)incep;
|
|
tn = (time_t)now;
|
|
memset(&tm, 0, sizeof(tm));
|
|
if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm)
|
|
&&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm)
|
|
&&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) {
|
|
log_info("%s expi=%s incep=%s now=%s", str, expi_buf,
|
|
incep_buf, now_buf);
|
|
} else
|
|
log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi,
|
|
(unsigned)incep, (unsigned)now);
|
|
}
|
|
|
|
/** check rrsig dates */
|
|
static int
|
|
check_dates(struct val_env* ve, uint32_t unow,
|
|
uint8_t* expi_p, uint8_t* incep_p, char** reason)
|
|
{
|
|
/* read out the dates */
|
|
int32_t expi, incep, now;
|
|
memmove(&expi, expi_p, sizeof(expi));
|
|
memmove(&incep, incep_p, sizeof(incep));
|
|
expi = ntohl(expi);
|
|
incep = ntohl(incep);
|
|
|
|
/* get current date */
|
|
if(ve->date_override) {
|
|
if(ve->date_override == -1) {
|
|
verbose(VERB_ALGO, "date override: ignore date");
|
|
return 1;
|
|
}
|
|
now = ve->date_override;
|
|
verbose(VERB_ALGO, "date override option %d", (int)now);
|
|
} else now = (int32_t)unow;
|
|
|
|
/* check them */
|
|
if(incep - expi > 0) {
|
|
sigdate_error("verify: inception after expiration, "
|
|
"signature bad", expi, incep, now);
|
|
*reason = "signature inception after expiration";
|
|
return 0;
|
|
}
|
|
if(incep - now > 0) {
|
|
/* within skew ? (calc here to avoid calculation normally) */
|
|
int32_t skew = (expi-incep)/10;
|
|
if(skew < ve->skew_min) skew = ve->skew_min;
|
|
if(skew > ve->skew_max) skew = ve->skew_max;
|
|
if(incep - now > skew) {
|
|
sigdate_error("verify: signature bad, current time is"
|
|
" before inception date", expi, incep, now);
|
|
*reason = "signature before inception date";
|
|
return 0;
|
|
}
|
|
sigdate_error("verify warning suspicious signature inception "
|
|
" or bad local clock", expi, incep, now);
|
|
}
|
|
if(now - expi > 0) {
|
|
int32_t skew = (expi-incep)/10;
|
|
if(skew < ve->skew_min) skew = ve->skew_min;
|
|
if(skew > ve->skew_max) skew = ve->skew_max;
|
|
if(now - expi > skew) {
|
|
sigdate_error("verify: signature expired", expi,
|
|
incep, now);
|
|
*reason = "signature expired";
|
|
return 0;
|
|
}
|
|
sigdate_error("verify warning suspicious signature expiration "
|
|
" or bad local clock", expi, incep, now);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/** adjust rrset TTL for verified rrset, compare to original TTL and expi */
|
|
static void
|
|
adjust_ttl(struct val_env* ve, uint32_t unow,
|
|
struct ub_packed_rrset_key* rrset, uint8_t* orig_p,
|
|
uint8_t* expi_p, uint8_t* incep_p)
|
|
{
|
|
struct packed_rrset_data* d =
|
|
(struct packed_rrset_data*)rrset->entry.data;
|
|
/* read out the dates */
|
|
int32_t origttl, expittl, expi, incep, now;
|
|
memmove(&origttl, orig_p, sizeof(origttl));
|
|
memmove(&expi, expi_p, sizeof(expi));
|
|
memmove(&incep, incep_p, sizeof(incep));
|
|
expi = ntohl(expi);
|
|
incep = ntohl(incep);
|
|
origttl = ntohl(origttl);
|
|
|
|
/* get current date */
|
|
if(ve->date_override) {
|
|
now = ve->date_override;
|
|
} else now = (int32_t)unow;
|
|
expittl = expi - now;
|
|
|
|
/* so now:
|
|
* d->ttl: rrset ttl read from message or cache. May be reduced
|
|
* origttl: original TTL from signature, authoritative TTL max.
|
|
* MIN_TTL: minimum TTL from config.
|
|
* expittl: TTL until the signature expires.
|
|
*
|
|
* Use the smallest of these, but don't let origttl set the TTL
|
|
* below the minimum.
|
|
*/
|
|
if(MIN_TTL > (time_t)origttl && d->ttl > MIN_TTL) {
|
|
verbose(VERB_QUERY, "rrset TTL larger than original and minimum"
|
|
" TTL, adjusting TTL downwards to minimum ttl");
|
|
d->ttl = MIN_TTL;
|
|
}
|
|
else if(MIN_TTL <= origttl && d->ttl > (time_t)origttl) {
|
|
verbose(VERB_QUERY, "rrset TTL larger than original TTL, "
|
|
"adjusting TTL downwards to original ttl");
|
|
d->ttl = origttl;
|
|
}
|
|
|
|
if(expittl > 0 && d->ttl > (time_t)expittl) {
|
|
verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl,"
|
|
" adjusting TTL downwards");
|
|
d->ttl = expittl;
|
|
}
|
|
}
|
|
|
|
enum sec_status
|
|
dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf,
|
|
struct val_env* ve, time_t now,
|
|
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
|
|
size_t dnskey_idx, size_t sig_idx,
|
|
struct rbtree_type** sortree, int* buf_canon, char** reason)
|
|
{
|
|
enum sec_status sec;
|
|
uint8_t* sig; /* RRSIG rdata */
|
|
size_t siglen;
|
|
size_t rrnum = rrset_get_count(rrset);
|
|
uint8_t* signer; /* rrsig signer name */
|
|
size_t signer_len;
|
|
unsigned char* sigblock; /* signature rdata field */
|
|
unsigned int sigblock_len;
|
|
uint16_t ktag; /* DNSKEY key tag */
|
|
unsigned char* key; /* public key rdata field */
|
|
unsigned int keylen;
|
|
rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen);
|
|
/* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */
|
|
if(siglen < 2+20) {
|
|
verbose(VERB_QUERY, "verify: signature too short");
|
|
*reason = "signature too short";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) {
|
|
verbose(VERB_QUERY, "verify: dnskey without ZSK flag");
|
|
*reason = "dnskey without ZSK flag";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) {
|
|
/* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */
|
|
verbose(VERB_QUERY, "verify: dnskey has wrong key protocol");
|
|
*reason = "dnskey has wrong protocolnumber";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
/* verify as many fields in rrsig as possible */
|
|
signer = sig+2+18;
|
|
signer_len = dname_valid(signer, siglen-2-18);
|
|
if(!signer_len) {
|
|
verbose(VERB_QUERY, "verify: malformed signer name");
|
|
*reason = "signer name malformed";
|
|
return sec_status_bogus; /* signer name invalid */
|
|
}
|
|
if(!dname_subdomain_c(rrset->rk.dname, signer)) {
|
|
verbose(VERB_QUERY, "verify: signer name is off-tree");
|
|
*reason = "signer name off-tree";
|
|
return sec_status_bogus; /* signer name offtree */
|
|
}
|
|
sigblock = (unsigned char*)signer+signer_len;
|
|
if(siglen < 2+18+signer_len+1) {
|
|
verbose(VERB_QUERY, "verify: too short, no signature data");
|
|
*reason = "signature too short, no signature data";
|
|
return sec_status_bogus; /* sig rdf is < 1 byte */
|
|
}
|
|
sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len);
|
|
|
|
/* verify key dname == sig signer name */
|
|
if(query_dname_compare(signer, dnskey->rk.dname) != 0) {
|
|
verbose(VERB_QUERY, "verify: wrong key for rrsig");
|
|
log_nametypeclass(VERB_QUERY, "RRSIG signername is",
|
|
signer, 0, 0);
|
|
log_nametypeclass(VERB_QUERY, "the key name is",
|
|
dnskey->rk.dname, 0, 0);
|
|
*reason = "signer name mismatches key name";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
/* verify covered type */
|
|
/* memcmp works because type is in network format for rrset */
|
|
if(memcmp(sig+2, &rrset->rk.type, 2) != 0) {
|
|
verbose(VERB_QUERY, "verify: wrong type covered");
|
|
*reason = "signature covers wrong type";
|
|
return sec_status_bogus;
|
|
}
|
|
/* verify keytag and sig algo (possibly again) */
|
|
if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) {
|
|
verbose(VERB_QUERY, "verify: wrong algorithm");
|
|
*reason = "signature has wrong algorithm";
|
|
return sec_status_bogus;
|
|
}
|
|
ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx));
|
|
if(memcmp(sig+2+16, &ktag, 2) != 0) {
|
|
verbose(VERB_QUERY, "verify: wrong keytag");
|
|
*reason = "signature has wrong keytag";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
/* verify labels is in a valid range */
|
|
if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) {
|
|
verbose(VERB_QUERY, "verify: labelcount out of range");
|
|
*reason = "signature labelcount out of range";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
/* original ttl, always ok */
|
|
|
|
if(!*buf_canon) {
|
|
/* create rrset canonical format in buffer, ready for
|
|
* signature */
|
|
if(!rrset_canonical(region, buf, rrset, sig+2,
|
|
18 + signer_len, sortree)) {
|
|
log_err("verify: failed due to alloc error");
|
|
return sec_status_unchecked;
|
|
}
|
|
*buf_canon = 1;
|
|
}
|
|
|
|
/* check that dnskey is available */
|
|
dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen);
|
|
if(!key) {
|
|
verbose(VERB_QUERY, "verify: short DNSKEY RR");
|
|
return sec_status_unchecked;
|
|
}
|
|
|
|
/* verify */
|
|
sec = verify_canonrrset(buf, (int)sig[2+2],
|
|
sigblock, sigblock_len, key, keylen, reason);
|
|
|
|
if(sec == sec_status_secure) {
|
|
/* check if TTL is too high - reduce if so */
|
|
adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12);
|
|
|
|
/* verify inception, expiration dates
|
|
* Do this last so that if you ignore expired-sigs the
|
|
* rest is sure to be OK. */
|
|
if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) {
|
|
return sec_status_bogus;
|
|
}
|
|
}
|
|
|
|
return sec;
|
|
}
|