// Copyright (c) 2014-2023, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #pragma once #include <iostream> #include <memory> #include <type_traits> #include <stdint.h> #include <boost/chrono.hpp> #include <boost/regex.hpp> #include "misc_language.h" #include "stats.h" #include "common/perf_timer.h" #include "common/timings.h" class performance_timer final { public: typedef boost::chrono::high_resolution_clock clock; performance_timer() { m_base = clock::now(); } void start() { m_start = clock::now(); } int elapsed_ms() { clock::duration elapsed = clock::now() - m_start; return static_cast<int>(boost::chrono::duration_cast<boost::chrono::milliseconds>(elapsed).count()); } private: clock::time_point m_base; clock::time_point m_start; }; struct Params final { TimingsDatabase td; bool verbose; bool stats; unsigned loop_multiplier; }; struct ParamsShuttle { Params core_params; ParamsShuttle() = default; ParamsShuttle(Params ¶ms) : core_params{params} {} virtual ~ParamsShuttle() = default; // virtual for non-final type }; template <typename T, typename ParamsT, typename std::enable_if<!std::is_same<ParamsT, ParamsShuttle>::value, bool>::type = true> bool init_test(T &test, ParamsT ¶ms_shuttle) { // assume if the params shuttle isn't the base shuttle type, then the test must take the shuttle as an input on init if (!test.init(params_shuttle)) return false; return true; } template <typename T, typename ParamsT, typename std::enable_if<std::is_same<ParamsT, ParamsShuttle>::value, bool>::type = true> bool init_test(T &test, ParamsT ¶ms_shuttle) { if (!test.init()) return false; return true; } template <typename T, typename ParamsT> class test_runner final { public: test_runner(const ParamsT ¶ms_shuttle) : m_elapsed(0) , m_params_shuttle(params_shuttle) , m_core_params(params_shuttle.core_params) , m_per_call_timers(T::loop_count * params_shuttle.core_params.loop_multiplier, {true}) { } int run() { static_assert(0 < T::loop_count, "T::loop_count must be greater than 0"); T test; if (!init_test(test, m_params_shuttle)) return -1; performance_timer timer; timer.start(); warm_up(); if (m_core_params.verbose) std::cout << "Warm up: " << timer.elapsed_ms() << " ms" << std::endl; timer.start(); for (size_t i = 0; i < T::loop_count * m_core_params.loop_multiplier; ++i) { if (m_core_params.stats) m_per_call_timers[i].resume(); if (!test.test()) return i + 1; if (m_core_params.stats) m_per_call_timers[i].pause(); } m_elapsed = timer.elapsed_ms(); m_stats.reset(new Stats<tools::PerformanceTimer, uint64_t>(m_per_call_timers)); return 0; } int elapsed_time() const { return m_elapsed; } size_t get_size() const { return m_stats->get_size(); } int time_per_call(int scale = 1) const { static_assert(0 < T::loop_count, "T::loop_count must be greater than 0"); return m_elapsed * scale / (T::loop_count * m_core_params.loop_multiplier); } uint64_t get_min() const { return m_stats->get_min(); } uint64_t get_max() const { return m_stats->get_max(); } double get_mean() const { return m_stats->get_mean(); } uint64_t get_median() const { return m_stats->get_median(); } double get_stddev() const { return m_stats->get_standard_deviation(); } double get_non_parametric_skew() const { return m_stats->get_non_parametric_skew(); } std::vector<uint64_t> get_quantiles(size_t n) const { return m_stats->get_quantiles(n); } bool is_same_distribution(size_t npoints, double mean, double stddev) const { return m_stats->is_same_distribution_99(npoints, mean, stddev); } private: /** * Warm up processor core, enabling turbo boost, etc. */ uint64_t warm_up() { const size_t warm_up_rounds = 1000 * 1000 * 1000; m_warm_up = 0; for (size_t i = 0; i < warm_up_rounds; ++i) { ++m_warm_up; } return m_warm_up; } private: volatile uint64_t m_warm_up; ///<! This field is intended for preclude compiler optimizations int m_elapsed; Params m_core_params; ParamsT m_params_shuttle; std::vector<tools::PerformanceTimer> m_per_call_timers; std::unique_ptr<Stats<tools::PerformanceTimer, uint64_t>> m_stats; }; template <typename T, typename ParamsT> bool run_test(const std::string &filter, ParamsT ¶ms_shuttle, const char* test_name) { static_assert(std::is_base_of<ParamsShuttle, ParamsT>::value, "Must use a ParamsShuttle."); Params ¶ms = params_shuttle.core_params; boost::smatch match; if (!filter.empty() && !boost::regex_match(std::string(test_name), match, boost::regex(filter))) return true; test_runner<T, ParamsT> runner(params_shuttle); int run_result{runner.run()}; if (run_result == 0) { if (params.verbose) { std::cout << test_name << " - OK:\n"; std::cout << " loop count: " << T::loop_count * params.loop_multiplier << '\n'; std::cout << " elapsed: " << runner.elapsed_time() << " ms\n"; if (params.stats) { std::cout << " min: " << runner.get_min() << " ns\n"; std::cout << " max: " << runner.get_max() << " ns\n"; std::cout << " median: " << runner.get_median() << " ns\n"; std::cout << " std dev: " << runner.get_stddev() << " ns\n"; } } else { std::cout << test_name << " (" << T::loop_count * params.loop_multiplier << " calls) - OK:"; } const char *unit = "ms"; double scale = 1000000; uint64_t time_per_call = runner.time_per_call(); if (time_per_call < 100) { scale = 1000; time_per_call = runner.time_per_call(1000); #ifdef _WIN32 unit = "us"; #else unit = "µs"; #endif } const auto quantiles = runner.get_quantiles(10); double min = runner.get_min(); double max = runner.get_max(); double med = runner.get_median(); double mean = runner.get_mean(); double stddev = runner.get_stddev(); double npskew = runner.get_non_parametric_skew(); const TimingsDatabase::instance* prev_instance = params.td.get_most_recent(test_name); params.td.add(test_name, {time(NULL), runner.get_size(), min, max, mean, med, stddev, npskew, quantiles}); std::cout << (params.verbose ? " time per call: " : " ") << time_per_call << " " << unit << "/call" << (params.verbose ? "\n" : ""); if (params.stats) { uint64_t mins = min / scale; uint64_t meds = med / scale; uint64_t p95s = quantiles[9] / scale; uint64_t stddevs = stddev / scale; std::string cmp; if (prev_instance) { if (!runner.is_same_distribution(prev_instance->npoints, prev_instance->mean, prev_instance->stddev)) { double pc = fabs(100. * (prev_instance->mean - runner.get_mean()) / prev_instance->mean); cmp = ", " + std::to_string(pc) + "% " + (mean > prev_instance->mean ? "slower" : "faster"); } cmp += " -- " + std::to_string(prev_instance->mean); } std::cout << " (min " << mins << " " << unit << ", 90th " << p95s << " " << unit << ", median " << meds << " " << unit << ", std dev " << stddevs << " " << unit << ")" << cmp; } std::cout << std::endl; } else if (run_result == -1) { std::cout << test_name << " - FAILED ON INIT" << std::endl; return false; } else { std::cout << test_name << " - FAILED ON TEST LOOP " << run_result << std::endl; return false; } return true; } #define QUOTEME(x) #x #define TEST_PERFORMANCE0(filter, params, test_class) run_test< test_class >(filter, params, QUOTEME(test_class)) #define TEST_PERFORMANCE1(filter, params, test_class, a0) run_test< test_class<a0> >(filter, params, QUOTEME(test_class<a0>)) #define TEST_PERFORMANCE2(filter, params, test_class, a0, a1) run_test< test_class<a0, a1> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ">") #define TEST_PERFORMANCE3(filter, params, test_class, a0, a1, a2) run_test< test_class<a0, a1, a2> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ">") #define TEST_PERFORMANCE4(filter, params, test_class, a0, a1, a2, a3) run_test< test_class<a0, a1, a2, a3> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ">") #define TEST_PERFORMANCE5(filter, params, test_class, a0, a1, a2, a3, a4) run_test< test_class<a0, a1, a2, a3, a4> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ", " QUOTEME(a4) ">") #define TEST_PERFORMANCE6(filter, params, test_class, a0, a1, a2, a3, a4, a5) run_test< test_class<a0, a1, a2, a3, a4, a5> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ", " QUOTEME(a4) ", " QUOTEME(a5) ">")