// Copyright (c) 2014-2024, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "gtest/gtest.h" #include #include #include #include "ringct/rctTypes.h" #include "ringct/rctSigs.h" #include "ringct/rctOps.h" #include "device/device.hpp" #include "string_tools.h" using namespace std; using namespace crypto; using namespace rct; TEST(ringct, Borromean) { int j = 0; //Tests for Borromean signatures //#boro true one, false one, C != sum Ci, and one out of the range.. int N = 64; key64 xv; key64 P1v; key64 P2v; bits indi; for (j = 0 ; j < N ; j++) { indi[j] = (int)randXmrAmount(2); xv[j] = skGen(); if ( (int)indi[j] == 0 ) { scalarmultBase(P1v[j], xv[j]); } else { addKeys1(P1v[j], xv[j], H2[j]); } subKeys(P2v[j], P1v[j], H2[j]); } //#true one boroSig bb = genBorromean(xv, P1v, P2v, indi); ASSERT_TRUE(verifyBorromean(bb, P1v, P2v)); //#false one indi[3] = (indi[3] + 1) % 2; bb = genBorromean(xv, P1v, P2v, indi); ASSERT_FALSE(verifyBorromean(bb, P1v, P2v)); //#true one again indi[3] = (indi[3] + 1) % 2; bb = genBorromean(xv, P1v, P2v, indi); ASSERT_TRUE(verifyBorromean(bb, P1v, P2v)); //#false one bb = genBorromean(xv, P2v, P1v, indi); ASSERT_FALSE(verifyBorromean(bb, P1v, P2v)); } TEST(ringct, MG_sigs) { int j = 0; int N = 0; //Tests for MG Sigs //#MG sig: true one N = 3;// #cols int R = 3;// #rows keyV xtmp = skvGen(R); keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys keyV sk = skvGen(R); keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys; int ind = 2; int i = 0; for (j = 0 ; j < R ; j++) { for (i = 0 ; i < N ; i++) { xm[i][j] = skGen(); P[i][j] = scalarmultBase(xm[i][j]); } } for (j = 0 ; j < R ; j++) { sk[j] = xm[ind][j]; } key message = identity(); mgSig IIccss = MLSAG_Gen(message, P, sk, ind, R, hw::get_device("default")); ASSERT_TRUE(MLSAG_Ver(message, P, IIccss, R)); //#MG sig: false one N = 3;// #cols R = 3;// #rows xtmp = skvGen(R); keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys sk = skvGen(R); //P (N, xtmp);// = keyM[[None]*N] #stores the public keys; ind = 2; for (j = 0 ; j < R ; j++) { for (i = 0 ; i < N ; i++) { xx[i][j] = skGen(); P[i][j] = scalarmultBase(xx[i][j]); } sk[j] = xx[ind][j]; } sk[2] = skGen();//assume we don't know one of the private keys.. IIccss = MLSAG_Gen(message, P, sk, ind, R, hw::get_device("default")); ASSERT_FALSE(MLSAG_Ver(message, P, IIccss, R)); } TEST(ringct, CLSAG) { const size_t N = 11; const size_t idx = 5; ctkeyV pubs; key p, t, t2, u; const key message = identity(); ctkey backup; clsag clsag; for (size_t i = 0; i < N; ++i) { key sk; ctkey tmp; skpkGen(sk, tmp.dest); skpkGen(sk, tmp.mask); pubs.push_back(tmp); } // Set P[idx] skpkGen(p, pubs[idx].dest); // Set C[idx] t = skGen(); u = skGen(); addKeys2(pubs[idx].mask,t,u,H); // Set commitment offset key Cout; t2 = skGen(); addKeys2(Cout,t2,u,H); // Prepare generation inputs ctkey insk; insk.dest = p; insk.mask = t; // bad message clsag = rct::proveRctCLSAGSimple(zero(),pubs,insk,t2,Cout,idx,hw::get_device("default")); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); // bad index at creation try { clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,(idx + 1) % N,hw::get_device("default")); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); } catch (...) { /* either exception, or failure to verify above */ } // bad z at creation try { ctkey insk2; insk2.dest = insk.dest; insk2.mask = skGen(); clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,idx,hw::get_device("default")); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); } catch (...) { /* either exception, or failure to verify above */ } // bad C at creation backup = pubs[idx]; pubs[idx].mask = scalarmultBase(skGen()); try { clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,idx,hw::get_device("default")); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); } catch (...) { /* either exception, or failure to verify above */ } pubs[idx] = backup; // bad p at creation try { ctkey insk2; insk2.dest = skGen(); insk2.mask = insk.mask; clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,idx,hw::get_device("default")); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); } catch (...) { /* either exception, or failure to verify above */ } // bad P at creation backup = pubs[idx]; pubs[idx].dest = scalarmultBase(skGen()); try { clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,idx,hw::get_device("default")); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); } catch (...) { /* either exception, or failure to verify above */ } pubs[idx] = backup; // Test correct signature clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,idx,hw::get_device("default")); ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); // empty s auto sbackup = clsag.s; clsag.s.clear(); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.s = sbackup; // too few s elements key backup_key; backup_key = clsag.s.back(); clsag.s.pop_back(); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.s.push_back(backup_key); // too many s elements clsag.s.push_back(skGen()); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.s.pop_back(); // bad s in clsag at verification for (auto &s: clsag.s) { backup_key = s; s = skGen(); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); s = backup_key; } // bad c1 in clsag at verification backup_key = clsag.c1; clsag.c1 = skGen(); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.c1 = backup_key; // bad I in clsag at verification backup_key = clsag.I; clsag.I = scalarmultBase(skGen()); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.I = backup_key; // bad D in clsag at verification backup_key = clsag.D; clsag.D = scalarmultBase(skGen()); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.D = backup_key; // D not in main subgroup in clsag at verification backup_key = clsag.D; rct::key x; ASSERT_TRUE(epee::string_tools::hex_to_pod("c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", x)); clsag.D = rct::addKeys(clsag.D, x); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); clsag.D = backup_key; // swapped I and D in clsag at verification std::swap(clsag.I, clsag.D); ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); std::swap(clsag.I, clsag.D); // check it's still good, in case we failed to restore ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout)); } TEST(ringct, range_proofs) { //Ring CT Stuff //ct range proofs ctkeyV sc, pc; ctkey sctmp, pctmp; std::vector inamounts; //add fake input 6000 inamounts.push_back(6000); tie(sctmp, pctmp) = ctskpkGen(inamounts.back()); sc.push_back(sctmp); pc.push_back(pctmp); inamounts.push_back(7000); tie(sctmp, pctmp) = ctskpkGen(inamounts.back()); sc.push_back(sctmp); pc.push_back(pctmp); vectoramounts; rct::keyV amount_keys; key mask; //add output 500 amounts.push_back(500); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); keyV destinations; key Sk, Pk; skpkGen(Sk, Pk); destinations.push_back(Pk); //add output for 12500 amounts.push_back(12500); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); skpkGen(Sk, Pk); destinations.push_back(Pk); const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; //compute rct data with mixin 3 - should fail since full type with > 1 input bool ok = false; try { genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3, rct_config, hw::get_device("default")); } catch(...) { ok = true; } ASSERT_TRUE(ok); //compute rct data with mixin 3 rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 0, 3, rct_config, hw::get_device("default")); //verify rct data ASSERT_TRUE(verRctSimple(s)); //decode received amount decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default")); // Ring CT with failing MG sig part should not verify! // Since sum of inputs != outputs amounts[1] = 12501; skpkGen(Sk, Pk); destinations[1] = Pk; //compute rct data with mixin 3 s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 0, 3, rct_config, hw::get_device("default")); //verify rct data ASSERT_FALSE(verRctSimple(s)); //decode received amount decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default")); } TEST(ringct, range_proofs_with_fee) { //Ring CT Stuff //ct range proofs ctkeyV sc, pc; ctkey sctmp, pctmp; std::vector inamounts; //add fake input 6001 inamounts.push_back(6001); tie(sctmp, pctmp) = ctskpkGen(inamounts.back()); sc.push_back(sctmp); pc.push_back(pctmp); inamounts.push_back(7000); tie(sctmp, pctmp) = ctskpkGen(inamounts.back()); sc.push_back(sctmp); pc.push_back(pctmp); vectoramounts; keyV amount_keys; key mask; //add output 500 amounts.push_back(500); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); keyV destinations; key Sk, Pk; skpkGen(Sk, Pk); destinations.push_back(Pk); //add output for 12500 amounts.push_back(12500); amount_keys.push_back(hash_to_scalar(zero())); skpkGen(Sk, Pk); destinations.push_back(Pk); const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; //compute rct data with mixin 3 rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 1, 3, rct_config, hw::get_device("default")); //verify rct data ASSERT_TRUE(verRctSimple(s)); //decode received amount decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default")); // Ring CT with failing MG sig part should not verify! // Since sum of inputs != outputs amounts[1] = 12501; skpkGen(Sk, Pk); destinations[1] = Pk; //compute rct data with mixin 3 s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 500, 3, rct_config, hw::get_device("default")); //verify rct data ASSERT_FALSE(verRctSimple(s)); //decode received amount decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default")); } TEST(ringct, simple) { ctkeyV sc, pc; ctkey sctmp, pctmp; //this vector corresponds to output amounts vectoroutamounts; //this vector corresponds to input amounts vectorinamounts; //this keyV corresponds to destination pubkeys keyV destinations; keyV amount_keys; key mask; //add fake input 3000 //the sc is secret data //pc is public data tie(sctmp, pctmp) = ctskpkGen(3000); sc.push_back(sctmp); pc.push_back(pctmp); inamounts.push_back(3000); //add fake input 3000 //the sc is secret data //pc is public data tie(sctmp, pctmp) = ctskpkGen(3000); sc.push_back(sctmp); pc.push_back(pctmp); inamounts.push_back(3000); //add output 5000 outamounts.push_back(5000); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); //add the corresponding destination pubkey key Sk, Pk; skpkGen(Sk, Pk); destinations.push_back(Pk); //add output 999 outamounts.push_back(999); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); //add the corresponding destination pubkey skpkGen(Sk, Pk); destinations.push_back(Pk); key message = skGen(); //real message later (hash of txn..) //compute sig with mixin 2 xmr_amount txnfee = 1; const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; rctSig s = genRctSimple(message, sc, pc, destinations,inamounts, outamounts, amount_keys, txnfee, 2, rct_config, hw::get_device("default")); //verify ring ct signature ASSERT_TRUE(verRctSimple(s)); //decode received amount corresponding to output pubkey index 1 decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default")); } static rct::rctSig make_sample_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee) { ctkeyV sc, pc; ctkey sctmp, pctmp; vectoramounts; keyV destinations; keyV amount_keys; key Sk, Pk; for (int n = 0; n < n_inputs; ++n) { tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]); sc.push_back(sctmp); pc.push_back(pctmp); } for (int n = 0; n < n_outputs; ++n) { amounts.push_back(output_amounts[n]); skpkGen(Sk, Pk); if (n < n_outputs - 1 || !last_is_fee) { destinations.push_back(Pk); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); } } const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; return genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3, rct_config, hw::get_device("default")); } static rct::rctSig make_sample_simple_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], uint64_t fee) { ctkeyV sc, pc; ctkey sctmp, pctmp; vector inamounts, outamounts; keyV destinations; keyV amount_keys; key Sk, Pk; for (int n = 0; n < n_inputs; ++n) { inamounts.push_back(input_amounts[n]); tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]); sc.push_back(sctmp); pc.push_back(pctmp); } for (int n = 0; n < n_outputs; ++n) { outamounts.push_back(output_amounts[n]); amount_keys.push_back(hash_to_scalar(zero())); skpkGen(Sk, Pk); destinations.push_back(Pk); } const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; return genRctSimple(rct::zero(), sc, pc, destinations, inamounts, outamounts, amount_keys, fee, 3, rct_config, hw::get_device("default")); } static bool range_proof_test(bool expected_valid, int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee, bool simple) { //compute rct data bool valid; try { rctSig s; // simple takes fee as a parameter, non-simple takes it as an extra element to output amounts if (simple) { s = make_sample_simple_rct_sig(n_inputs, input_amounts, last_is_fee ? n_outputs - 1 : n_outputs, output_amounts, last_is_fee ? output_amounts[n_outputs - 1] : 0); valid = verRctSimple(s); } else { s = make_sample_rct_sig(n_inputs, input_amounts, n_outputs, output_amounts, last_is_fee); valid = verRct(s); } } catch (const std::exception &e) { valid = false; } if (valid == expected_valid) { return testing::AssertionSuccess(); } else { return testing::AssertionFailure(); } } #define NELTS(array) (sizeof(array)/sizeof(array[0])) TEST(ringct, range_proofs_reject_empty_outs) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_empty_outs_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_empty_ins) { const uint64_t inputs[] = {}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_empty_ins_simple) { const uint64_t inputs[] = {}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_all_empty) { const uint64_t inputs[] = {}; const uint64_t outputs[] = {}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_all_empty_simple) { const uint64_t inputs[] = {}; const uint64_t outputs[] = {}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_empty) { const uint64_t inputs[] = {0}; const uint64_t outputs[] = {}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_zero_empty_simple) { const uint64_t inputs[] = {0}; const uint64_t outputs[] = {}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_empty_zero) { const uint64_t inputs[] = {}; const uint64_t outputs[] = {0}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_empty_zero_simple) { const uint64_t inputs[] = {}; const uint64_t outputs[] = {0}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_zero) { const uint64_t inputs[] = {0}; const uint64_t outputs[] = {0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_zero_zero_simple) { const uint64_t inputs[] = {0}; const uint64_t outputs[] = {0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_out_first) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {0, 5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_zero_out_first_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {0, 5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_out_last) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {5000, 0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_zero_out_last_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {5000, 0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_out_middle) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {2500, 0, 2500}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_zero_out_middle_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {2500, 0, 2500}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero) { const uint64_t inputs[] = {0}; const uint64_t outputs[] = {0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_zero_in_first_simple) { const uint64_t inputs[] = {0, 5000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_in_last_simple) { const uint64_t inputs[] = {5000, 0}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_zero_in_middle_simple) { const uint64_t inputs[] = {2500, 0, 2500}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_single_lower) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {1}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_single_lower_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {1}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_single_higher) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {5001}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_single_higher_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {5001}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_single_out_negative) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {(uint64_t)-1000ll}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_single_out_negative_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {(uint64_t)-1000ll}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_out_negative_first) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {(uint64_t)-1000ll, 6000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_out_negative_first_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {(uint64_t)-1000ll, 6000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_out_negative_last) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {6000, (uint64_t)-1000ll}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_out_negative_last_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {6000, (uint64_t)-1000ll}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_out_negative_middle) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_out_negative_middle_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_single_in_negative) { const uint64_t inputs[] = {(uint64_t)-1000ll}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_single_in_negative_simple) { const uint64_t inputs[] = {(uint64_t)-1000ll}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_in_negative_first) { const uint64_t inputs[] = {(uint64_t)-1000ll, 6000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_in_negative_first_simple) { const uint64_t inputs[] = {(uint64_t)-1000ll, 6000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_in_negative_last) { const uint64_t inputs[] = {6000, (uint64_t)-1000ll}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_in_negative_last_simple) { const uint64_t inputs[] = {6000, (uint64_t)-1000ll}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_in_negative_middle) { const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_in_negative_middle_simple) { const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_reject_higher_list) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_reject_higher_list_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_1_to_1) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_1_to_1_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_1_to_N) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); } TEST(ringct, range_proofs_accept_1_to_N_simple) { const uint64_t inputs[] = {5000}; const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true)); } TEST(ringct, range_proofs_accept_N_to_1_simple) { const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; const uint64_t outputs[] = {5000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_N_to_N_simple) { const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, range_proofs_accept_very_long_simple) { const size_t N=12; uint64_t inputs[N]; uint64_t outputs[N]; for (size_t n = 0; n < N; ++n) { inputs[n] = n; outputs[n] = n; } std::shuffle(inputs, inputs + N, crypto::random_device{}); std::shuffle(outputs, outputs + N, crypto::random_device{}); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); } TEST(ringct, HPow2) { key G = scalarmultBase(d2h(1)); // Note that H is computed differently than standard hashing // This method is not guaranteed to return a curvepoint for all inputs // Don't use it elsewhere key H = cn_fast_hash(G); ge_p3 H_p3; int decode = ge_frombytes_vartime(&H_p3, H.bytes); ASSERT_EQ(decode, 0); // this is known to pass for the particular value G ge_p2 H_p2; ge_p3_to_p2(&H_p2, &H_p3); ge_p1p1 H8_p1p1; ge_mul8(&H8_p1p1, &H_p2); ge_p1p1_to_p3(&H_p3, &H8_p1p1); ge_p3_tobytes(H.bytes, &H_p3); for (int j = 0 ; j < ATOMS ; j++) { ASSERT_TRUE(equalKeys(H, H2[j])); addKeys(H, H, H); } } static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789}; TEST(ringct, d2h) { key k, P1; skpkGen(k, P1); for (auto amount: test_amounts) { d2h(k, amount); ASSERT_TRUE(amount == h2d(k)); } } TEST(ringct, d2b) { for (auto amount: test_amounts) { bits b; d2b(b, amount); ASSERT_TRUE(amount == b2d(b)); } } TEST(ringct, prooveRange_is_non_deterministic) { key C[2], mask[2]; for (int n = 0; n < 2; ++n) proveRange(C[n], mask[n], 80); ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes))); ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes))); } TEST(ringct, fee_0_valid) { const uint64_t inputs[] = {2000}; const uint64_t outputs[] = {2000, 0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); } TEST(ringct, fee_0_valid_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {2000, 0}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); } TEST(ringct, fee_non_0_valid) { const uint64_t inputs[] = {2000}; const uint64_t outputs[] = {1900, 100}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); } TEST(ringct, fee_non_0_valid_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {1900, 100}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); } TEST(ringct, fee_non_0_invalid_higher) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {1990, 100}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); } TEST(ringct, fee_non_0_invalid_higher_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {1990, 100}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); } TEST(ringct, fee_non_0_invalid_lower) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {1000, 100}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); } TEST(ringct, fee_non_0_invalid_lower_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {1000, 100}; EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); } TEST(ringct, fee_burn_valid_one_out) { const uint64_t inputs[] = {2000}; const uint64_t outputs[] = {0, 2000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); } TEST(ringct, fee_burn_valid_one_out_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {0, 2000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); } TEST(ringct, fee_burn_valid_zero_out) { const uint64_t inputs[] = {2000}; const uint64_t outputs[] = {2000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); } TEST(ringct, fee_burn_valid_zero_out_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {2000}; EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); } static rctSig make_sig() { static const uint64_t inputs[] = {2000}; static const uint64_t outputs[] = {1000, 1000}; static rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); return sig; } #define TEST_rctSig_elements(name, op) \ TEST(ringct, rctSig_##name) \ { \ rct::rctSig sig = make_sig(); \ ASSERT_TRUE(rct::verRct(sig)); \ op; \ ASSERT_FALSE(rct::verRct(sig)); \ } TEST_rctSig_elements(rangeSigs_empty, sig.p.rangeSigs.resize(0)); TEST_rctSig_elements(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back())); TEST_rctSig_elements(rangeSigs_too_few, sig.p.rangeSigs.pop_back()); TEST_rctSig_elements(mgSig_MG_empty, sig.p.MGs.resize(0)); TEST_rctSig_elements(mgSig_ss_empty, sig.p.MGs[0].ss.resize(0)); TEST_rctSig_elements(mgSig_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back())); TEST_rctSig_elements(mgSig_ss_too_few, sig.p.MGs[0].ss.pop_back()); TEST_rctSig_elements(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0)); TEST_rctSig_elements(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back())); TEST_rctSig_elements(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back()); TEST_rctSig_elements(mgSig_II_empty, sig.p.MGs[0].II.resize(0)); TEST_rctSig_elements(mgSig_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back())); TEST_rctSig_elements(mgSig_II_too_few, sig.p.MGs[0].II.pop_back()); TEST_rctSig_elements(mixRing_empty, sig.mixRing.resize(0)); TEST_rctSig_elements(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back())); TEST_rctSig_elements(mixRing_too_few, sig.mixRing.pop_back()); TEST_rctSig_elements(mixRing0_empty, sig.mixRing[0].resize(0)); TEST_rctSig_elements(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back())); TEST_rctSig_elements(mixRing0_too_few, sig.mixRing[0].pop_back()); TEST_rctSig_elements(ecdhInfo_empty, sig.ecdhInfo.resize(0)); TEST_rctSig_elements(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back())); TEST_rctSig_elements(ecdhInfo_too_few, sig.ecdhInfo.pop_back()); TEST_rctSig_elements(outPk_empty, sig.outPk.resize(0)); TEST_rctSig_elements(outPk_too_many, sig.outPk.push_back(sig.outPk.back())); TEST_rctSig_elements(outPk_too_few, sig.outPk.pop_back()); static rct::rctSig make_sig_simple() { static const uint64_t inputs[] = {1000, 1000}; static const uint64_t outputs[] = {1000}; static rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000); return sig; } #define TEST_rctSig_elements_simple(name, op) \ TEST(ringct, rctSig_##name##_simple) \ { \ rct::rctSig sig = make_sig_simple(); \ ASSERT_TRUE(rct::verRctSimple(sig)); \ op; \ ASSERT_FALSE(rct::verRctSimple(sig)); \ } TEST_rctSig_elements_simple(rangeSigs_empty, sig.p.rangeSigs.resize(0)); TEST_rctSig_elements_simple(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back())); TEST_rctSig_elements_simple(rangeSigs_too_few, sig.p.rangeSigs.pop_back()); TEST_rctSig_elements_simple(mgSig_empty, sig.p.MGs.resize(0)); TEST_rctSig_elements_simple(mgSig_too_many, sig.p.MGs.push_back(sig.p.MGs.back())); TEST_rctSig_elements_simple(mgSig_too_few, sig.p.MGs.pop_back()); TEST_rctSig_elements_simple(mgSig0_ss_empty, sig.p.MGs[0].ss.resize(0)); TEST_rctSig_elements_simple(mgSig0_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back())); TEST_rctSig_elements_simple(mgSig0_ss_too_few, sig.p.MGs[0].ss.pop_back()); TEST_rctSig_elements_simple(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0)); TEST_rctSig_elements_simple(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back())); TEST_rctSig_elements_simple(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back()); TEST_rctSig_elements_simple(mgSig0_II_empty, sig.p.MGs[0].II.resize(0)); TEST_rctSig_elements_simple(mgSig0_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back())); TEST_rctSig_elements_simple(mgSig0_II_too_few, sig.p.MGs[0].II.pop_back()); TEST_rctSig_elements_simple(mixRing_empty, sig.mixRing.resize(0)); TEST_rctSig_elements_simple(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back())); TEST_rctSig_elements_simple(mixRing_too_few, sig.mixRing.pop_back()); TEST_rctSig_elements_simple(mixRing0_empty, sig.mixRing[0].resize(0)); TEST_rctSig_elements_simple(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back())); TEST_rctSig_elements_simple(mixRing0_too_few, sig.mixRing[0].pop_back()); TEST_rctSig_elements_simple(pseudoOuts_empty, sig.pseudoOuts.resize(0)); TEST_rctSig_elements_simple(pseudoOuts_too_many, sig.pseudoOuts.push_back(sig.pseudoOuts.back())); TEST_rctSig_elements_simple(pseudoOuts_too_few, sig.pseudoOuts.pop_back()); TEST_rctSig_elements_simple(ecdhInfo_empty, sig.ecdhInfo.resize(0)); TEST_rctSig_elements_simple(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back())); TEST_rctSig_elements_simple(ecdhInfo_too_few, sig.ecdhInfo.pop_back()); TEST_rctSig_elements_simple(outPk_empty, sig.outPk.resize(0)); TEST_rctSig_elements_simple(outPk_too_many, sig.outPk.push_back(sig.outPk.back())); TEST_rctSig_elements_simple(outPk_too_few, sig.outPk.pop_back()); TEST(ringct, reject_gen_simple_ver_non_simple) { const uint64_t inputs[] = {1000, 1000}; const uint64_t outputs[] = {1000}; rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000); ASSERT_FALSE(rct::verRct(sig)); } TEST(ringct, reject_gen_non_simple_ver_simple) { const uint64_t inputs[] = {2000}; const uint64_t outputs[] = {1000, 1000}; rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); ASSERT_FALSE(rct::verRctSimple(sig)); } TEST(ringct, key_ostream) { std::stringstream out; out << "BEGIN" << rct::H << "END"; EXPECT_EQ( std::string{"BEGIN<8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94>END"}, out.str() ); } TEST(ringct, zeroCommmit) { static const uint64_t amount = crypto::rand(); const rct::key z = rct::zeroCommit(amount); const rct::key a = rct::scalarmultBase(rct::identity()); const rct::key b = rct::scalarmultH(rct::d2h(amount)); const rct::key manual = rct::addKeys(a, b); ASSERT_EQ(z, manual); } static rct::key uncachedZeroCommit(uint64_t amount) { const rct::key am = rct::d2h(amount); const rct::key bH = rct::scalarmultH(am); return rct::addKeys(rct::G, bH); } TEST(ringct, zeroCommitCache) { ASSERT_EQ(rct::zeroCommit(0), uncachedZeroCommit(0)); ASSERT_EQ(rct::zeroCommit(1), uncachedZeroCommit(1)); ASSERT_EQ(rct::zeroCommit(2), uncachedZeroCommit(2)); ASSERT_EQ(rct::zeroCommit(10), uncachedZeroCommit(10)); ASSERT_EQ(rct::zeroCommit(200), uncachedZeroCommit(200)); ASSERT_EQ(rct::zeroCommit(1000000000), uncachedZeroCommit(1000000000)); ASSERT_EQ(rct::zeroCommit(3000000000000), uncachedZeroCommit(3000000000000)); ASSERT_EQ(rct::zeroCommit(900000000000000), uncachedZeroCommit(900000000000000)); } TEST(ringct, H) { ge_p3 p3; ASSERT_EQ(ge_frombytes_vartime(&p3, rct::H.bytes), 0); ASSERT_EQ(memcmp(&p3, &ge_p3_H, sizeof(ge_p3)), 0); } TEST(ringct, mul8) { ge_p3 p3; rct::key key; ASSERT_EQ(rct::scalarmult8(rct::identity()), rct::identity()); rct::scalarmult8(p3,rct::identity()); ge_p3_tobytes(key.bytes, &p3); ASSERT_EQ(key, rct::identity()); ASSERT_EQ(rct::scalarmult8(rct::H), rct::scalarmultKey(rct::H, rct::EIGHT)); rct::scalarmult8(p3,rct::H); ge_p3_tobytes(key.bytes, &p3); ASSERT_EQ(key, rct::scalarmultKey(rct::H, rct::EIGHT)); ASSERT_EQ(rct::scalarmultKey(rct::scalarmultKey(rct::H, rct::INV_EIGHT), rct::EIGHT), rct::H); } TEST(ringct, aggregated) { static const size_t N_PROOFS = 16; std::vector s(N_PROOFS); std::vector sp(N_PROOFS); for (size_t n = 0; n < N_PROOFS; ++n) { static const uint64_t inputs[] = {1000, 1000}; static const uint64_t outputs[] = {500, 1500}; s[n] = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 0); sp[n] = &s[n]; } ASSERT_TRUE(verRctSemanticsSimple(sp)); }