// Copyright (c) 2017-2024, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "ringct/rctSigs.h" #include "cryptonote_basic/cryptonote_basic.h" #include "multisig/multisig.h" #include "multisig/multisig_tx_builder_ringct.h" #include "common/apply_permutation.h" #include "chaingen.h" #include "multisig.h" #include "common/apply_permutation.h" #include "crypto/crypto.h" #include "cryptonote_basic/cryptonote_basic.h" #include "device/device.hpp" #include "multisig/multisig.h" #include "multisig/multisig_account.h" #include "multisig/multisig_kex_msg.h" #include "ringct/rctOps.h" #include "ringct/rctSigs.h" using namespace epee; using namespace crypto; using namespace cryptonote; using namespace multisig; //#define NO_MULTISIG static bool make_multisig_accounts(std::vector &accounts, const uint32_t threshold) { CHECK_AND_ASSERT_MES(accounts.size() > 0, false, "Invalid multisig scheme"); std::vector multisig_accounts; std::vector signers; std::vector round_msgs; multisig_accounts.reserve(accounts.size()); signers.reserve(accounts.size()); round_msgs.reserve(accounts.size()); // create multisig accounts for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index) { // create account and collect signer multisig_accounts.emplace_back( multisig_account{ get_multisig_blinded_secret_key(accounts[account_index].get_keys().m_spend_secret_key), get_multisig_blinded_secret_key(accounts[account_index].get_keys().m_view_secret_key) } ); signers.emplace_back(multisig_accounts.back().get_base_pubkey()); // collect account's first kex msg round_msgs.emplace_back(multisig_accounts.back().get_next_kex_round_msg()); } // initialize accounts and collect kex messages for the next round std::vector temp_round_msgs(multisig_accounts.size()); for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index) { multisig_accounts[account_index].initialize_kex(threshold, signers, round_msgs); temp_round_msgs[account_index] = multisig_accounts[account_index].get_next_kex_round_msg(); } // perform key exchange rounds while (!multisig_accounts[0].multisig_is_ready()) { round_msgs = temp_round_msgs; for (std::size_t account_index{0}; account_index < multisig_accounts.size(); ++account_index) { multisig_accounts[account_index].kex_update(round_msgs); temp_round_msgs[account_index] = multisig_accounts[account_index].get_next_kex_round_msg(); } } // update accounts post key exchange for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index) { accounts[account_index].make_multisig(multisig_accounts[account_index].get_common_privkey(), multisig_accounts[account_index].get_base_privkey(), multisig_accounts[account_index].get_multisig_pubkey(), multisig_accounts[account_index].get_multisig_privkeys()); } return true; } //---------------------------------------------------------------------------------------------------------------------- // Tests bool gen_multisig_tx_validation_base::generate_with(std::vector& events, size_t inputs, size_t mixin, uint64_t amount_paid, bool valid, size_t threshold, size_t total, size_t creator, std::vector other_signers, const std::function &sources, std::vector &destinations)> &pre_tx, const std::function &post_tx) const { uint64_t ts_start = 1338224400; bool r; CHECK_AND_ASSERT_MES(total >= 2, false, "Bad scheme"); CHECK_AND_ASSERT_MES(threshold <= total, false, "Bad scheme"); CHECK_AND_ASSERT_MES(inputs >= 1 && inputs <= 8, false, "Inputs should between 1 and 8"); // given as 1 based for clarity --creator; for (size_t &signer: other_signers) --signer; CHECK_AND_ASSERT_MES(creator < total, false, "invalid creator"); for (size_t signer: other_signers) CHECK_AND_ASSERT_MES(signer < total, false, "invalid signer"); GENERATE_MULTISIG_ACCOUNT(miner_account, threshold, total); MAKE_GENESIS_BLOCK(events, blk_0, miner_account[creator], ts_start); // create 16 miner accounts, and have them mine the next 16 blocks // they will have a coinbase with a single out that's pseudo rct constexpr size_t n_coinbases = 16; cryptonote::account_base miner_accounts[n_coinbases]; const cryptonote::block *prev_block = &blk_0; cryptonote::block blocks[n_coinbases]; for (size_t n = 0; n < n_coinbases; ++n) { // the first block goes to the multisig account miner_accounts[n].generate(); account_base &account = n < inputs ? miner_account[creator] : miner_accounts[n]; CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, account, test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs, HF_VERSION_BULLETPROOF_PLUS, HF_VERSION_BULLETPROOF_PLUS, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long crypto::hash(), 0, transaction(), std::vector(), 0, 1, 4), false, "Failed to generate block"); events.push_back(blocks[n]); prev_block = blocks + n; } // rewind cryptonote::block blk_r, blk_last; { blk_last = blocks[n_coinbases - 1]; for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i) { cryptonote::block blk; CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk, blk_last, miner_accounts[0], test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs, HF_VERSION_BULLETPROOF_PLUS, HF_VERSION_BULLETPROOF_PLUS, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long crypto::hash(), 0, transaction(), std::vector(), 0, 1, 4), false, "Failed to generate block"); events.push_back(blk); blk_last = blk; } blk_r = blk_last; } cryptonote::keypair in_ephemeral; crypto::public_key tx_pub_key[n_coinbases]; crypto::public_key output_pub_key[n_coinbases]; for (size_t n = 0; n < n_coinbases; ++n) { tx_pub_key[n] = get_tx_pub_key_from_extra(blocks[n].miner_tx); MDEBUG("tx_pub_key: " << tx_pub_key); cryptonote::get_output_public_key(blocks[n].miner_tx.vout[0], output_pub_key[n]); MDEBUG("output_pub_key: " << output_pub_key); } std::unordered_map subaddresses; subaddresses[miner_account[0].get_keys().m_account_address.m_spend_public_key] = {0,0}; // create k/L/R/ki for that output we're going to spend std::vector>> account_k(total); std::vector>> account_L(total); std::vector>> account_R(total); std::vector>> account_ki(total); std::vector additional_tx_keys; for (size_t msidx = 0; msidx < total; ++msidx) { CHECK_AND_ASSERT_MES(miner_account[msidx].get_keys().m_account_address.m_spend_public_key == miner_account[0].get_keys().m_account_address.m_spend_public_key, false, "Mismatched spend public keys"); size_t nlr = threshold < total ? threshold - 1 : 1; nlr *= multisig::signing::kAlphaComponents; account_k[msidx].resize(inputs); account_L[msidx].resize(inputs); account_R[msidx].resize(inputs); account_ki[msidx].resize(inputs); for (size_t tdidx = 0; tdidx < inputs; ++tdidx) { account_L[msidx][tdidx].resize(nlr); account_R[msidx][tdidx].resize(nlr); for (size_t n = 0; n < nlr; ++n) { account_k[msidx][tdidx].push_back(rct::rct2sk(rct::skGen())); multisig::generate_multisig_LR(output_pub_key[tdidx], account_k[msidx][tdidx][n], account_L[msidx][tdidx][n], account_R[msidx][tdidx][n]); } size_t num_account_partial_ki = miner_account[msidx].get_multisig_keys().size(); account_ki[msidx][tdidx].resize(num_account_partial_ki); for (size_t kiidx = 0; kiidx < num_account_partial_ki; ++kiidx) { r = multisig::generate_multisig_key_image(miner_account[msidx].get_keys(), kiidx, output_pub_key[tdidx], account_ki[msidx][tdidx][kiidx]); CHECK_AND_ASSERT_MES(r, false, "Failed to generate multisig export key image"); } MDEBUG("Party " << msidx << ":"); MDEBUG("spend: sec " << crypto::secret_key_explicit_print_ref{miner_account[msidx].get_keys().m_spend_secret_key} << ", pub " << miner_account[msidx].get_keys().m_account_address.m_spend_public_key); MDEBUG("view: sec " << crypto::secret_key_explicit_print_ref{miner_account[msidx].get_keys().m_view_secret_key} << ", pub " << miner_account[msidx].get_keys().m_account_address.m_view_public_key); for (const auto &k: miner_account[msidx].get_multisig_keys()) MDEBUG("msk: " << crypto::secret_key_explicit_print_ref{k}); for (size_t n = 0; n < account_k[msidx][tdidx].size(); ++n) { MDEBUG("k: " << crypto::secret_key_explicit_print_ref{account_k[msidx][tdidx][n]}); MDEBUG("L: " << account_L[msidx][tdidx][n]); MDEBUG("R: " << account_R[msidx][tdidx][n]); } for (const auto &ki: account_ki[msidx][tdidx]) MDEBUG("ki: " << ki); } } // create kLRki std::vector kLRkis; std::unordered_set used_L; for (size_t tdidx = 0; tdidx < inputs; ++tdidx) { kLRkis.push_back(rct::multisig_kLRki()); rct::multisig_kLRki &kLRki = kLRkis.back(); std::vector pkis; for (size_t msidx = 0; msidx < total; ++msidx) for (size_t n = 0; n < account_ki[msidx][tdidx].size(); ++n) pkis.push_back(account_ki[msidx][tdidx][n]); r = multisig::generate_multisig_composite_key_image(miner_account[0].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)kLRki.ki); CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image"); MDEBUG("composite ki: " << kLRki.ki); for (size_t n = 1; n < total; ++n) { rct::key ki; r = multisig::generate_multisig_composite_key_image(miner_account[n].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)ki); CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image"); CHECK_AND_ASSERT_MES(kLRki.ki == ki, false, "Composite key images do not match"); } } // prepare a tx: we have 8 outputs, all from coinbase, so "fake" rct - use 2 std::vector sources; for (size_t n = 0; n < inputs; ++n) { sources.resize(sources.size() + 1); tx_source_entry& src = sources.back(); src.real_output = n; src.amount = blocks[n].miner_tx.vout[0].amount; src.real_out_tx_key = tx_pub_key[n]; src.real_output_in_tx_index = 0; src.mask = rct::identity(); src.rct = true; src.multisig_kLRki = kLRkis[n]; for (size_t m = 0; m <= mixin; ++m) { rct::ctkey ctkey; crypto::public_key output_public_key; cryptonote::get_output_public_key(blocks[m].miner_tx.vout[0], output_public_key); ctkey.dest = rct::pk2rct(output_public_key); MDEBUG("using " << (m == n ? "real" : "fake") << " input " << ctkey.dest); ctkey.mask = rct::commit(blocks[m].miner_tx.vout[0].amount, rct::identity()); // since those are coinbases, the masks are known src.outputs.push_back(std::make_pair(m, ctkey)); } } //fill outputs entry tx_destination_entry td; td.addr = miner_account[creator].get_keys().m_account_address; td.amount = amount_paid; std::vector destinations; //tx need two outputs since HF_VERSION_MIN_2_OUTPUTS destinations.push_back(td); td.amount = 0; destinations.push_back(td); if (pre_tx) pre_tx(sources, destinations); transaction tx; crypto::secret_key tx_key; std::vector additional_tx_secret_keys; crypto::secret_key multisig_tx_key_entropy; auto sources_copy = sources; multisig::signing::tx_builder_ringct_t tx_builder; CHECK_AND_ASSERT_MES(tx_builder.init(miner_account[creator].get_keys(), {}, 0, {0}, sources, destinations, {}, {rct::RangeProofPaddedBulletproof, 4}, true, false, tx_key, additional_tx_secret_keys, multisig_tx_key_entropy, tx), false, "error: multisig::signing::tx_builder_ringct_t::init"); // work out the permutation done on sources std::vector ins_order; for (size_t n = 0; n < sources.size(); ++n) { for (size_t idx = 0; idx < sources_copy.size(); ++idx) { CHECK_AND_ASSERT_MES((size_t)sources_copy[idx].real_output < sources_copy[idx].outputs.size(), false, "Invalid real_output"); if (sources_copy[idx].outputs[sources_copy[idx].real_output].second.dest == sources[n].outputs[sources[n].real_output].second.dest) ins_order.push_back(idx); } } CHECK_AND_ASSERT_MES(ins_order.size() == sources.size(), false, "Failed to work out sources permutation"); struct { rct::keyM total_alpha_G; rct::keyM total_alpha_H; rct::keyV c_0; rct::keyV s; } sig; { used_L.clear(); sig.total_alpha_G.resize(sources.size(), rct::keyV(multisig::signing::kAlphaComponents, rct::identity())); sig.total_alpha_H.resize(sources.size(), rct::keyV(multisig::signing::kAlphaComponents, rct::identity())); sig.c_0.resize(sources.size()); sig.s.resize(sources.size()); for (std::size_t i = 0; i < sources.size(); ++i) { rct::keyV alpha(multisig::signing::kAlphaComponents); for (std::size_t m = 0; m < multisig::signing::kAlphaComponents; ++m) { alpha[m] = rct::sk2rct(account_k[creator][ins_order[i]][m]); sig.total_alpha_G[i][m] = rct::pk2rct(account_L[creator][ins_order[i]][m]); sig.total_alpha_H[i][m] = rct::pk2rct(account_R[creator][ins_order[i]][m]); for (size_t j = 0; j < total; ++j) { if (j == creator) continue; if (std::find(other_signers.begin(), other_signers.end(), j) == other_signers.end()) continue; for (std::size_t n = 0; n < account_L[j][ins_order[i]].size(); ++n) { if (used_L.find(account_L[j][ins_order[i]][n]) == used_L.end()) { used_L.insert(account_L[j][ins_order[i]][n]); rct::addKeys(sig.total_alpha_G[i][m], sig.total_alpha_G[i][m], rct::pk2rct(account_L[j][ins_order[i]][n])); rct::addKeys(sig.total_alpha_H[i][m], sig.total_alpha_H[i][m], rct::pk2rct(account_R[j][ins_order[i]][n])); break; } } } } CHECK_AND_ASSERT_MES(tx_builder.first_partial_sign(i, sig.total_alpha_G[i], sig.total_alpha_H[i], alpha, sig.c_0[i], sig.s[i]), false, "error: multisig::signing::tx_builder_ringct_t::first_partial_sign"); } } // sign std::unordered_set used_keys; const std::vector &msk0 = miner_account[creator].get_multisig_keys(); for (const auto &sk: msk0) used_keys.insert(sk); //these were used in 'tx_builder.init() -> tx_builder.first_partial_sign()' for (size_t signer: other_signers) { rct::key skey = rct::zero(); const std::vector &msk1 = miner_account[signer].get_multisig_keys(); for (size_t n = 0; n < msk1.size(); ++n) { const crypto::secret_key &sk1 = msk1[n]; if (used_keys.find(sk1) == used_keys.end()) { used_keys.insert(sk1); sc_add(skey.bytes, skey.bytes, rct::sk2rct(sk1).bytes); } } CHECK_AND_ASSERT_MES(!(skey == rct::zero()), false, "failed to find secret multisig key to sign transaction"); rct::keyM k(sources.size(), rct::keyV(multisig::signing::kAlphaComponents)); for (std::size_t i = 0; i < sources.size(); ++i) { for (std::size_t j = 0; j < multisig::signing::kAlphaComponents; ++j) { for (std::size_t n = 0; n < account_k[signer][i].size(); ++n) { crypto::public_key L; rct::scalarmultBase((rct::key&)L, rct::sk2rct(account_k[signer][i][n])); if (used_L.find(L) != used_L.end()) { k[i][j] = rct::sk2rct(account_k[signer][i][n]); account_k[signer][i][n] = rct::rct2sk(rct::zero()); //demo: always clear nonces from long-term storage after use break; } } CHECK_AND_ASSERT_MES(!(k[i][j] == rct::zero()), false, "failed to find k to sign transaction"); } } tools::apply_permutation(ins_order, k); multisig::signing::tx_builder_ringct_t signer_tx_builder; CHECK_AND_ASSERT_MES(signer_tx_builder.init(miner_account[signer].get_keys(), {}, 0, {0}, sources, destinations, {}, {rct::RangeProofPaddedBulletproof, 4}, true, true, tx_key, additional_tx_secret_keys, multisig_tx_key_entropy, tx), false, "error: multisig::signing::tx_builder_ringct_t::init"); MDEBUG("signing with k size " << k.size()); for (size_t n = 0; n < multisig::signing::kAlphaComponents; ++n) MDEBUG("signing with k " << k.back()[n]); MDEBUG("signing with sk " << skey); for (const auto &sk: used_keys) MDEBUG(" created with sk " << crypto::secret_key_explicit_print_ref{sk}); CHECK_AND_ASSERT_MES(signer_tx_builder.next_partial_sign(sig.total_alpha_G, sig.total_alpha_H, k, skey, sig.c_0, sig.s), false, "error: multisig::signing::tx_builder_ringct_t::next_partial_sign"); // in round-robin signing, the last signer finalizes the tx if (signer == other_signers.back()) CHECK_AND_ASSERT_MES(signer_tx_builder.finalize_tx(sources, sig.c_0, sig.s, tx), false, "error: multisig::signing::tx_builder_ringct_t::finalize_tx"); } // verify this tx is really to the expected address const crypto::public_key tx_pub_key2 = get_tx_pub_key_from_extra(tx, 0); crypto::key_derivation derivation; r = crypto::generate_key_derivation(tx_pub_key2, miner_account[creator].get_keys().m_view_secret_key, derivation); CHECK_AND_ASSERT_MES(r, false, "Failed to generate derivation"); uint64_t n_outs = 0, amount = 0; std::vector additional_derivations; crypto::public_key output_public_key; for (size_t n = 0; n < tx.vout.size(); ++n) { CHECK_AND_ASSERT_MES(typeid(txout_to_tagged_key) == tx.vout[n].target.type(), false, "Unexpected tx out type"); cryptonote::get_output_public_key(tx.vout[n], output_public_key); if (is_out_to_acc_precomp(subaddresses, output_public_key, derivation, additional_derivations, n, hw::get_device(("default")))) { ++n_outs; CHECK_AND_ASSERT_MES(tx.vout[n].amount == 0, false, "Destination amount is not zero"); rct::key Ctmp; crypto::secret_key scalar1; crypto::derivation_to_scalar(derivation, n, scalar1); rct::ecdhTuple ecdh_info = tx.rct_signatures.ecdhInfo[n]; rct::ecdhDecode(ecdh_info, rct::sk2rct(scalar1), tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG || tx.rct_signatures.type == rct::RCTTypeBulletproofPlus); rct::key C = tx.rct_signatures.outPk[n].mask; rct::addKeys2(Ctmp, ecdh_info.mask, ecdh_info.amount, rct::H); CHECK_AND_ASSERT_MES(rct::equalKeys(C, Ctmp), false, "Failed to decode amount"); amount += rct::h2d(ecdh_info.amount); } } CHECK_AND_ASSERT_MES(n_outs == 2, false, "Not exactly 2 outputs were received"); CHECK_AND_ASSERT_MES(amount == amount_paid, false, "Amount paid was not the expected amount"); if (post_tx) post_tx(tx); if (!valid) DO_CALLBACK(events, "mark_invalid_tx"); events.push_back(tx); LOG_PRINT_L0("Test tx: " << obj_to_json_str(tx)); return true; } bool gen_multisig_tx_valid_22_1_2::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_22_1_2_many_inputs::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 4, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_22_2_1::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 2, {1}, NULL, NULL); } bool gen_multisig_tx_valid_33_1_23::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 1, {2, 3}, NULL, NULL); } bool gen_multisig_tx_valid_33_3_21::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 3, {2, 1}, NULL, NULL); } bool gen_multisig_tx_valid_23_1_2::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_23_1_3::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {3}, NULL, NULL); } bool gen_multisig_tx_valid_23_2_1::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {1}, NULL, NULL); } bool gen_multisig_tx_valid_23_2_3::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {3}, NULL, NULL); } bool gen_multisig_tx_valid_45_1_234::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 4, 5, 1, {2, 3, 4}, NULL, NULL); } bool gen_multisig_tx_valid_45_4_135_many_inputs::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 4, mixin, amount_paid, true, 4, 5, 4, {1, 3, 5}, NULL, NULL); } bool gen_multisig_tx_valid_89_3_1245789::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 8, 9, 3, {1, 2, 4, 5, 7, 8, 9}, NULL, NULL); } bool gen_multisig_tx_valid_24_1_2::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 4, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_24_1_2_many_inputs::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 4, mixin, amount_paid, true, 2, 4, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_25_1_2::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 2, 5, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_25_1_2_many_inputs::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 4, mixin, amount_paid, true, 2, 5, 1, {2}, NULL, NULL); } bool gen_multisig_tx_valid_48_1_234::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, true, 4, 8, 1, {2, 3, 4}, NULL, NULL); } bool gen_multisig_tx_valid_48_1_234_many_inputs::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 4, mixin, amount_paid, true, 4, 8, 1, {2, 3, 4}, NULL, NULL); } bool gen_multisig_tx_invalid_22_1__no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 2, 2, 1, {}, NULL, NULL); } bool gen_multisig_tx_invalid_33_1__no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {}, NULL, NULL); } bool gen_multisig_tx_invalid_33_1_2_no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {2}, NULL, NULL); } bool gen_multisig_tx_invalid_33_1_3_no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {3}, NULL, NULL); } bool gen_multisig_tx_invalid_23_1__no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 2, 3, 1, {}, NULL, NULL); } bool gen_multisig_tx_invalid_45_5_23_no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 4, 5, 5, {2, 3}, NULL, NULL); } bool gen_multisig_tx_invalid_24_1_no_signers::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 2, 4, 1, {}, NULL, NULL); } bool gen_multisig_tx_invalid_25_1_no_signers::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 2, 5, 1, {}, NULL, NULL); } bool gen_multisig_tx_invalid_48_1_no_signers::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 4, 8, 1, {}, NULL, NULL); } bool gen_multisig_tx_invalid_48_1_23_no_threshold::generate(std::vector& events) const { const size_t mixin = 10; const uint64_t amount_paid = 10000; return generate_with(events, 2, mixin, amount_paid, false, 4, 8, 1, {2, 3}, NULL, NULL); }