21 Commits

Author SHA1 Message Date
copyCat
341771ac3e copyright: bump to 2024 2024-05-21 16:29:33 +00:00
jeffro256
e8cac61f4b
core_rpc_server: return ID of submitted block 2023-06-30 15:31:35 -05:00
mj-xmr
5b4fea72cf Copyright: Update to 2023
Co-authored-by: plowsof <plowsof@protonmail.com>
extra files
2023-01-16 13:00:18 +01:00
moneromooo-monero
ac6db928c2 functional_tests: silence the cpu power test program
it's very spammy and drowns the test output
2022-07-21 12:00:05 +00:00
mj-xmr
da9aa1f7f8
Copyright: Update to 2022 2022-03-04 06:59:20 +01:00
mj-xmr
6799e212cc
Tests: Mining test uses a parametric path for finding the calculation app
MINING_SILENT and MINING_NO_MEASUREMENT env vars
2021-04-27 06:21:02 +02:00
mj-xmr
45f01f577c [CI] Adaptive mining timeout, depending on available CPU power
Printing also available RAM. Add comprehensive description.
2021-03-30 05:48:55 +02:00
mj-xmr
1aecdcf536 Increase timeout for the mining test 4 times (to 240s) 2021-02-11 13:42:43 +01:00
selsta
e79c88e610
functional_tests: inrease mining timeout 2020-10-22 04:17:11 +02:00
iamamyth
163f83720f
functional_tests: rewrite mining code, clearer timeout info 2020-09-24 20:04:05 +02:00
moneromooo-monero
6a0b3b1f8a
functional_tests: add randomx tests 2020-08-27 15:13:03 +00:00
moneromooo-monero
261abf79e1
functional_tests: ensure mining stops on error in mining test
this prevents messing up any subsequent test too
2019-10-27 16:21:30 +00:00
moneromooo-monero
2899379791
daemon, wallet: new pay for RPC use system
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.

This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo

This has some advantages:
 - incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
 - incentive to run your own node instead of using a third party's, thereby promoting decentralization
 - decentralized: payment is done between a client and server, with no third party needed
 - private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
 - no payment occurs on the blockchain, so there is no extra transactional load
 - one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
 - no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
 - Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
 - no large credit balance maintained on servers, so they have no incentive to exit scam
 - you can use any/many node(s), since there's little cost in switching servers
 - market based prices: competition between servers to lower costs
 - incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
 - increases network security
 - helps counteract mining pools' share of the network hash rate
 - zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner

And some disadvantages:
 - low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
 - payment is "random", so a server might go a long time without a block before getting one
 - a public node's overall expected payment may be small

Public nodes are expected to compete to find a suitable level for
cost of service.

The daemon can be set up this way to require payment for RPC services:

  monerod --rpc-payment-address 4xxxxxx \
    --rpc-payment-credits 250 --rpc-payment-difficulty 1000

These values are an example only.

The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.

The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).

There are three new settings in the wallet:

 - credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.

 - auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25

 - persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.

To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.

The wallet has a few new commands too:

 - start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
 - stop_mining_for_rpc: stop mining to acquire more credits
 - rpc_payments: display information about current credits with
the currently selected daemon

The node has an extra command:

 - rpc_payments: display information about clients and their
balances

The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
2019-10-25 09:34:38 +00:00
moneromooo-monero
6b72541dc0
functional_tests: python3 compatibility
and add missing tests
2019-09-17 11:38:33 +00:00
moneromooo-monero
1fac83858a
functional_tests: pop exactly what we need to test before testing 2019-09-17 11:38:31 +00:00
moneromooo-monero
c148002534
functional_tests: add submitblock test 2019-09-17 11:38:27 +00:00
moneromooo-monero
a71d91cecf
functional_tests: add test for mining via wallet 2019-09-17 11:38:20 +00:00
moneromooo-monero
77594c4f4a
functional_tests: fix python3 compatibility
Also add missing bans test to the default tests
2019-05-29 11:59:48 +00:00
moneromooo-monero
aba2b2e7a2
functional_tests: reset blockchain on test start 2019-04-20 11:28:19 +00:00
moneromooo-monero
22b644f47e
functional_tests: move RPC API to utils, it is not test specific 2019-03-22 15:29:44 +00:00
moneromooo-monero
18a2ed4518
functional_tests: add basic mining tests 2019-03-21 19:26:49 +00:00