- When background syncing, the wallet wipes the spend key
from memory and processes all new transactions. The wallet saves
all receives, spends, and "plausible" spends of receives the
wallet does not know key images for.
- When background sync disabled, the wallet processes all
background synced txs and then clears the background sync cache.
- Adding "plausible" spends to the background sync cache ensures
that the wallet does not need to query the daemon to see if any
received outputs were spent while background sync was enabled.
This would harm privacy especially for users of 3rd party daemons.
- To enable the feature in the CLI wallet, the user can set
background-sync to reuse-wallet-password or
custom-background-password and the wallet automatically syncs in
the background when the wallet locks, then processes all
background synced txs when the wallet is unlocked.
- The custom-background-password option enables the user to
open a distinct background wallet that only has a view key saved
and can be opened/closed/synced separately from the main wallet.
When the main wallet opens, it processes the background wallet's
cache.
- To enable the feature in the RPC wallet, there is a new
`/setup_background_sync` endpoint.
- HW, multsig and view-only wallets cannot background sync.
- device name is a new wallet property
- full device name is now a bit more structured so we can address particular device vendor + device path. Example: 'Ledger', 'Trezor:udp', 'Trezor:udp:127.0.0.1:21324', 'Trezor:bridge:usb01'. The part before ':' identifies HW device implementation, the optional part after ':' is device path to look for.
- new --hw-device parameter added to the wallet, can name the hardware device
- device reconnect added
The secret spend key is kept encrypted in memory, and
decrypted on the fly when needed.
Both spend and view secret keys are kept encrypted in a JSON
field in the keys file. This avoids leaving the keys in
memory due to being manipulated by the JSON I/O API.
When #3303 was merged, a cyclic dependency chain was generated:
libdevice <- libcncrypto <- libringct <- libdevice
This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:
libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct
This eliminates the need for crypto_device.cpp and rctOps_device.cpp.
Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
Fix the way the REAL mode is handle:
Let create_transactions_2 and create_transactions_from construct the vector of transactions.
Then iterate on it and resign.
We just need to add 'outs' list in the TX struct for that.
Fix default secret keys value when DEBUG_HWDEVICE mode is off
The magic value (00...00 for view key and FF..FF for spend key) was not correctly set
when DEBUG_HWDEVICE was off. Both was set to 00...00.
Add sub-address info in ABP map in order to correctly display destination sub-address on device
Fix DEBUG_HWDEVICE mode:
- Fix compilation errors.
- Fix control device init in ledger device.
- Add more log.
Fix sub addr control
Fix debug Info
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.
Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.
The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and the "Ledger", which delegates
all calls to Ledger device.