- Removed call to hash_init_point in constructor
- Replaced global static CURVE_TREES_V1 with a smart pointer
- Don't need to link Rust static lib when including curve_trees.h
- leaves table doesn't need dupsort flags, all leaves should be
unique by key
- rename fcmp -> fcmp_pp
- return when 0 leaves passed into trim_tree
- Can derive {O.x,I.x,C.x} from {O,C}
- Note: this slows down tests since they do the derivation both
on insertion into the tree, and when auditing the tree
- At the hard fork, we don't need to store {O,C} in the
output_amounts table anymore since that table will no longer be
useful
- validate output and commitment in tuple conversion function
- function to get_unlock_height from height in chain + unlock_time
- tx_outs_to_leaf_tuples function
- cleaned up trim impl (reduced num params in instructions and
conditional complexity)
- renamed locked_outputs table to locked_leaves (clearer tie to
merkle tree)
- size_t -> uint64_t for db compatibility across 32-bit and 64-bit
machines
- added hash_grow tests
There are quite a few variables in the code that are no longer
(or perhaps never were) in use. These were discovered by enabling
compiler warnings for unused variables and cleaning them up.
In most cases where the unused variables were the result
of a function call the call was left but the variable
assignment removed, unless it was obvious that it was
a simple getter with no side effects.
This curbs runaway growth while still allowing substantial
spikes in block weight
Original specification from ArticMine:
here is the scaling proposal
Define: LongTermBlockWeight
Before fork:
LongTermBlockWeight = BlockWeight
At or after fork:
LongTermBlockWeight = min(BlockWeight, 1.4*LongTermEffectiveMedianBlockWeight)
Note: To avoid possible consensus issues over rounding the LongTermBlockWeight for a given block should be calculated to the nearest byte, and stored as a integer in the block itself. The stored LongTermBlockWeight is then used for future calculations of the LongTermEffectiveMedianBlockWeight and not recalculated each time.
Define: LongTermEffectiveMedianBlockWeight
LongTermEffectiveMedianBlockWeight = max(300000, MedianOverPrevious100000Blocks(LongTermBlockWeight))
Change Definition of EffectiveMedianBlockWeight
From (current definition)
EffectiveMedianBlockWeight = max(300000, MedianOverPrevious100Blocks(BlockWeight))
To (proposed definition)
EffectiveMedianBlockWeight = min(max(300000, MedianOverPrevious100Blocks(BlockWeight)), 50*LongTermEffectiveMedianBlockWeight)
Notes:
1) There are no other changes to the existing penalty formula, median calculation, fees etc.
2) There is the requirement to store the LongTermBlockWeight of a block unencrypted in the block itself. This is to avoid possible consensus issues over rounding and also to prevent the calculations from becoming unwieldy as we move away from the fork.
3) When the EffectiveMedianBlockWeight cap is reached it is still possible to mine blocks up to 2x the EffectiveMedianBlockWeight by paying the corresponding penalty.
Note: the long term block weight is stored in the database, but not in the actual block itself,
since it requires recalculating anyway for verification.
149da42 db_lmdb: enable batch transactions by default (stoffu)
34cb6b4 add --regtest and --fixed-difficulty for regression testing (vicsn)
9e1403e update get_info RPC and bump RPC version (vicsn)
207b66e first new functional tests (vicsn)
This gets rid of the temporary precalc cache.
Also make the RPC able to send data back in binary or JSON,
since there can be a lot of data
This bumps the LMDB database format to v3, with migration.
on_generateblocks RPC call combines functionality from the on_getblocktemplate and on_submitblock RPC calls to allow rapid block creation. Difficulty is set permanently to 1 for regtest.
Makes use of FAKECHAIN network type, but takes hard fork heights from mainchain
Default reserve_size in generate_blocks RPC call is now 1. If it is 0, the following error occurs 'Failed to calculate offset for'.
Queries hard fork heights info of other network types
This patch allows to filter out sensitive information for queries that rely on the pool state, when running in restricted mode.
This filtering is only applied to data sent back to RPC queries. Results of inline commands typed locally in the daemon are not affected.
In practice, when running with `--restricted-rpc`:
* get_transaction_pool will list relayed transactions with the fields "last relayed time" and "received time" set to zero.
* get_transaction_pool will not list transaction that have do_not_relay set to true, and will not list key images that are used only for such transactions
* get_transaction_pool_hashes.bin will not list such transaction
* get_transaction_pool_stats will not count such transactions in any of the aggregated values that are computed
The implementation does not make filtering the default, so developers should be mindful of this if they add new RPC functionality.
Fixes#2590.
And optimize import startup:
Remember start_height position during initial count_blocks pass
to avoid having to reread entire file again to arrive at start_height
If monerod is started with default sync mode, set it to SAFE after
synchronization completes. Set it back to FAST if synchronization
restarts (e.g. because another peer has a longer blockchain).
If monerod is started with an explicit sync mode, none of this
automation takes effect.