This allows RPC coming from the loopback interface to not have
to pay for service. This makes it possible to run an externally
accessible RPC server for payment while also having a local RPC
server that can be run unrestricted and payment free.
4771a7ae p2p: remove obsolete local time in handshake (moneromooo-monero)
2fbbc4a2 p2p: avoid sending the same peer list over and over (moneromooo-monero)
3004835b epee: remove backward compatible endian specific address serialization (moneromooo-monero)
39a343d7 p2p: remove backward compatible peer list (moneromooo-monero)
60631802 p2p: simplify last_seen serialization now we have optional stores (moneromooo-monero)
9467b2e4 cryptonote_protocol: omit top 64 bits of difficulty when 0 (moneromooo-monero)
b595583f serialization: do not write optional fields with default value (moneromooo-monero)
5f98b46d p2p: remove obsolete local time from TIMED_SYNC (moneromooo-monero)
If a db resize happened, the txpool meta cursor might be stale,
and was not being renewed when necessary.
It would cause this SEGSEGV:
in mdb_cursor_set ()
in mdb_cursor_get ()
in cryptonote::BlockchainLMDB::get_txpool_tx_blob(crypto::hash const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&, cryptonote::relay_category) const ()
in cryptonote::tx_memory_pool::get_transaction(crypto::hash const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&, cryptonote::relay_category) const ()
in cryptonote::t_cryptonote_protocol_handler<cryptonote::core>::handle_notify_new_fluffy_block(int, epee::misc_utils::struct_init<cryptonote::NOTIFY_NEW_FLUFFY_BLOCK::request_t>&, cryptonote::cryptonote_connection_context&) ()
During the handshake for an incoming connection, the peer id is checked against the local node's peer id only for the specific zone of the incoming peer, in order to avoid linking public addresses to tor addresses:
5d7ae2d279/src/p2p/net_node.inl (L2343)
However, on handshakes for outgoing connections, all zones are checked:
5d7ae2d279/src/p2p/net_node.inl (L1064)
If an attacker wanted to link a specific tor node to a public node, they could potentially connect to as many public nodes as possible, get themselves added to the peer whitelist, maybe stuff some more attacker-owned addresses into the greylist, then disconnect, and for any future incoming connections, respond with the tor node's id in an attempt to link the public/tor addresses.
- Finding handling function in ZMQ JSON-RPC now uses binary search
- Temporary `std::vector`s in JSON output now use `epee::span` to
prevent allocations.
- Binary -> hex in JSON output no longer allocates temporary buffer
- C++ structs -> JSON skips intermediate DOM creation, and instead
write directly to an output stream.
88b82bef simplewallet: point to "set help" in the lock screen message (moneromooo-monero)
f19c9f23 util: allow newlines in string to be split (moneromooo-monero)
94266eeb simplewallet: fix output age display with duplicate heights (moneromooo-monero)
f1d379d2 simplewallet: fix "outputs in same tx" detector (moneromooo-monero)
In some contrived case, it might theoretically be the case that
destroy is called from another thread, which would modify the
threads array from two threads.
Coverity 208372
22d30866 simplewallet: add missing inactivity-lock-timeout to set help blurb (moneromooo-monero)
9f57f0df simplewallet: do not mention inactivity if a lock was manual (moneromooo-monero)
b90c4bc3 rpc: error out from get_info if the proxied call errors out (moneromooo-monero)
fa16df99 make_test_signature: exit nicely on top level exception (moneromooo-monero)
054b2621 node_rpc_proxy: init some new rpc payment fields in invalidate (moneromooo-monero)
d0faae2a rpc: init a few missing client_info members (moneromooo-monero)
d56a483a rpc: do not propagate exceptions out of a dtor (moneromooo-monero)
3c849188 rpc: always set the update field in update on sucess (moneromooo-monero)
Nodes remember which connections have been sent which peer addresses
and won't send it again. This causes more addresses to be sent as
the connection lifetime grows, since there is no duplication anymore,
which increases the diffusion speed of peer addresses. The whole
white list is now considered for sending, not just the most recent
seen peers. This further hardens against topology discovery, though
it will more readily send peers that have been last seen earlier
than it otherwise would. While this does save a fair amount of net
bandwidth, it makes heavy use of std::set lookups, which does bring
network_address::less up the profile, though not too aggressively.
8231c7cd rpc: fix bootstrap RPC payment RPC being made in raw JSON, not JSON RPC (moneromooo-monero)
81c26589 rpc: don't auto fail RPC needing payment in bootstrap mode (moneromooo-monero)
The backward compatibility code was always setting it to 1
in modern wallets since store_tx_keys was not present and thus
assumed to be 1 by default.
Reported by SeventhAlpaca
Adding a new `amounts` field ot the output of `get_transfers` RPC
method. This field specifies individual payments made to a single
subaddress in a single transaction, e.g., made by this command:
transfer <addr1> <amount1> <addr1> <amount2>
The added condition "hshd.current_height >= target" guards against
reporting "synchronized" too early in the special situation that the
very first peer sending us data is synced to a lower height than
ourselves.
This is technically a record encrypted in two pieces,
so the iv needs to be different.
Some backward compatibility is added to read data written
by existing code, but new data is written with the new code.
M100 = max{300kb, min{100block_median, m_long_term_effective_median_block_weight}}
not
M100 = max{300kb, m_long_term_effective_median_block_weight}
Fix base reward in get_dynamic_base_fee_estimate().
get_dynamic_base_fee_estimate() should match check_fee()
Fee is calculated based on block reward, and the reward penalty takes into account 0.5*max_block_weight (both before and after HF_VERSION_EFFECTIVE_SHORT_TERM_MEDIAN_IN_PENALTY).
Moved median calculation according to best practice of 'keep definitions close to where they are used'.
If more than one thread wants to make sure of the spend secret key,
then we decrypt on the first caller and reencrypt on the last caller,
otherwise we could use an invalid secret key.
If the hashes received would move the current blockchain past the
stop point, the short history would not be updated, since we do
not expect another loop, but the daemon might return earlier hashes,
causing the end index to not be enough to reach the threshold and
this require another loop, which will download the same hashes and
cause an infinite loop.
Dividing `dt` here by 1e6 converts it to seconds, but that is clearly
wrong since `REQUEST_NEXT_SCHEDULED_SPAN_THRESHOLD_STANDBY` is measured
in microseconds. As a result, this if statement was effectively never
used.
The highlight check was based on height, so would highlight
any output at that height, resulting in several matches if
a fake out was picked at the same height as the real spend
Avoids a DB error (leading to an assert) where a thread uses
a read txn previously created with an environment that was
since closed and reopened. While this usually works since
BlockchainLMDB renews txns if it detects the environment has
changed, this will not work if objects end up being allocated
at the same address as the previous instance, leading to stale
data usage.
Thanks hyc for the LMDB debugging.
38f691048 simplewallet: plug a timing leak (moneromooo-monero)
dcff02e4c epee: allow a random component in once_a_time timeouts (moneromooo-monero)
e10833024 wallet: reuse cached height when set after refresh (moneromooo-monero)
5956beaa1 wallet2: fix is_synced checking target height, not height (moneromooo-monero)
fd35e2304 wallet: fix another facet of "did I get some monero" information leak (moneromooo-monero)
d5472bd87 wallet2: do not send an unnecessary last getblocks.bin call on refresh (moneromooo-monero)
97ae7bb5c wallet2: do not repeatedly ask for pool txes sent to us (moneromooo-monero)
As reported by Tramèr et al, timing of refresh requests can be used
to see whether a password was requested (and thus at least one output
received) since this will induce a delay in subsequent calls.
To avoid this, we schedule calls at a given time instead of sleeping
for a set time (which would make delays additive).
To further avoid a scheduled call being during the time in which a
password is prompted, the actual scheduled time is now randomized.
Refreshing sets cached height, which is otherwise got by calling
get_info. Since get_info is called upon needing to display a prompt
after a command has finished, it can be used to determine how much
time a given command took to run if the cache timeout lapses while
the command runs. Refreshing caches the height as a side effect, so
get_info will never be called as a result of displaying a prompt
after refreshing (and potentially leaking how much time it took to
process a set of transactions, therefore leaking whether we got
some monero in them).
Target height would be appropriate for the daemon, which syncs
off other daemons, but the wallet syncs off the daemon it's
connected to, and its target is the daemon's current height.
We get new pool txes before processing any tx, pool or not.
This ensures that if we're asked for a password, this does not
cause a measurable delay in the txpool query after the last
block query.
The "everything refreshed" state was detected when a refresh call did
not return any new blocks. This can be detected without that extra
"empty" call by comparing the claimed node height to the height of
the last block retrieved. Doing this avoids that last call, saves
some bandwidth, and makes the common refresh case use only one call
rather than two.
As a side effect, it prevents an information leak reported by
Tramèr et al: if the wallet retrieves a set of blocks which includes
an output sent to the refreshing wallet, the wallet will prompt the
user for the password to decode the amount and calculate the key
image for the new output, and this will delay subsequent calls to
getblocks.bin, allowing a passive adversary to note the delay and
deduce when the wallet receives at least one output.
This can still happen if the wallet downloads more than 1000 blocks,
since this will be split in several calls, but then the most the
adversary can tell is which 1000 block section the user received
some monero (the adversary can estimate the heights of the blocks
by calculating how many "large" transfers are done, which will be
sections of blocks, the last of which will usually be below 1000,
but the size of the data should allow the actual number of blocks
sent to be determined fairly accurately).
This timing trick still be used via the subsequent scan for incoming
txes in the txpool, which will be fixed later.
This lets a passive attacker with access to the network link
between node and wallet perform traffic analysis to deduce
when an idle wallet receives a transaction.
Reported by Tramèr et al.