Implement CurveTrees & CurveTreesUnitTest classes to simplify callers

This commit is contained in:
j-berman 2024-05-21 14:22:54 -07:00
parent 5103a94ee9
commit d9390c7b08
4 changed files with 1001 additions and 938 deletions

View File

@ -34,64 +34,75 @@
#include <vector> #include <vector>
// forward declarations
class CurveTreesUnitTest;
namespace fcmp namespace fcmp
{ {
namespace curve_trees
// TODO: longer descriptions
template<typename C1, typename C2>
class CurveTrees
{ {
friend class ::CurveTreesUnitTest;
public:
CurveTrees(const C1 &c1, const C2 &c2, const std::size_t c1_width, const std::size_t c2_width):
m_c1{c1},
m_c2{c2},
m_c1_width{c1_width},
m_c2_width{c2_width},
m_leaf_layer_chunk_width{LEAF_TUPLE_SIZE * c2_width}
{
assert(c1_width > 0);
assert(c2_width > 0);
};
//member structs
public:
// Tuple that composes a single leaf in the tree
struct LeafTuple final
{
// Output ed25519 point x-coordinate
typename C2::Scalar O_x;
// Key image generator x-coordinate
typename C2::Scalar I_x;
// Commitment x-coordinate
typename C2::Scalar C_x;
};
static const std::size_t LEAF_TUPLE_SIZE = 3;
static_assert(sizeof(LeafTuple) == (sizeof(typename C2::Scalar) * LEAF_TUPLE_SIZE), "unexpected LeafTuple size");
// TODO: CurveTree class instantiated with the curves and widths // Leaves in the tree
// TODO: move "TEST" functions struct Leaves final
{
// TODO: make part of CurveTrees class
template<typename C>
struct LeafTuple final
{
typename C::Scalar O_x;
typename C::Scalar I_x;
typename C::Scalar C_x;
};
static const std::size_t LEAF_TUPLE_SIZE = 3;
// TODO: make this a const class member that's set on initialization
static const std::size_t LEAF_LAYER_CHUNK_WIDTH = LEAF_TUPLE_SIZE * tower_cycle::selene::SELENE.WIDTH;
// TODO: make part of CurveTrees class
// Tree structure
template<typename C>
struct Leaves final
{
// Starting index in the leaf layer // Starting index in the leaf layer
std::size_t start_idx; std::size_t start_idx;
// Contiguous leaves in a tree that start at the start_idx // Contiguous leaves in a tree that start at the start_idx
std::vector<LeafTuple<C>> tuples; std::vector<LeafTuple> tuples;
}; };
// TODO: make part of CurveTrees class // A layer of contiguous hashes starting from a specific start_idx in the tree
// A layer of contiguous hashes starting from a specific start_idx in the tree template<typename C>
template<typename C> struct LayerExtension final
struct LayerExtension final {
{
std::size_t start_idx; std::size_t start_idx;
std::vector<typename C::Point> hashes; std::vector<typename C::Point> hashes;
}; };
// TODO: make part of CurveTrees class // A struct useful to extend an existing tree
// A struct useful to extend an existing tree, layers alternate between C1 and C2 // - layers alternate between C1 and C2
template<typename C1, typename C2> // - c2_layer_extensions[0] is first layer after leaves, then c1_layer_extensions[0], c2_layer_extensions[1], etc
struct TreeExtension final struct TreeExtension final
{ {
Leaves<C2> leaves; Leaves leaves;
std::vector<LayerExtension<C1>> c1_layer_extensions; std::vector<LayerExtension<C1>> c1_layer_extensions;
std::vector<LayerExtension<C2>> c2_layer_extensions; std::vector<LayerExtension<C2>> c2_layer_extensions;
}; };
// TODO: make part of CurveTrees class // Useful data from the last chunk in a layer
// Useful data from the last chunk in a layer template<typename C>
template<typename C> struct LastChunkData final
struct LastChunkData final {
{
// The total number of children % child layer chunk width // The total number of children % child layer chunk width
/*TODO: const*/ std::size_t child_offset; /*TODO: const*/ std::size_t child_offset;
// The last child in the chunk (and therefore the last child in the child layer) // The last child in the chunk (and therefore the last child in the child layer)
@ -102,85 +113,156 @@ struct LastChunkData final
/*TODO: const*/ std::size_t child_layer_size; /*TODO: const*/ std::size_t child_layer_size;
// Total number of hashes in the parent layer // Total number of hashes in the parent layer
/*TODO: const*/ std::size_t parent_layer_size; /*TODO: const*/ std::size_t parent_layer_size;
}; };
// TODO: make part of CurveTrees class // Last chunk data from each layer in the tree
template<typename C1, typename C2> // - layers alternate between C1 and C2
struct LastChunks final // - c2_last_chunks[0] is first layer after leaves, then c1_last_chunks[0], then c2_last_chunks[1], etc
{ struct LastChunks final
{
std::vector<LastChunkData<C1>> c1_last_chunks; std::vector<LastChunkData<C1>> c1_last_chunks;
std::vector<LastChunkData<C2>> c2_last_chunks; std::vector<LastChunkData<C2>> c2_last_chunks;
}; };
// TODO: make part of CurveTrees class //member functions
template<typename C2> public:
LeafTuple<C2> output_to_leaf_tuple(const C2 &curve, // TODO: move impl into cpp
const crypto::public_key &O, LeafTuple output_to_leaf_tuple(const crypto::public_key &O, const crypto::public_key &C) const
const crypto::public_key &C) {
{
crypto::ec_point I; crypto::ec_point I;
crypto::derive_key_image_generator(O, I); crypto::derive_key_image_generator(O, I);
return LeafTuple<C2>{ return LeafTuple{
.O_x = curve.ed_25519_point_to_scalar(O), .O_x = m_c2.ed_25519_point_to_scalar(O),
.I_x = curve.ed_25519_point_to_scalar(I), .I_x = m_c2.ed_25519_point_to_scalar(I),
.C_x = curve.ed_25519_point_to_scalar(C) .C_x = m_c2.ed_25519_point_to_scalar(C)
};
}; };
};
// TODO: make part of CurveTrees class // TODO: move impl into cpp
template<typename C> std::vector<typename C2::Scalar> flatten_leaves(const std::vector<LeafTuple> &leaves) const
std::vector<typename C::Scalar> flatten_leaves(const C &curve, {
const std::vector<LeafTuple<C>> &leaves) std::vector<typename C2::Scalar> flattened_leaves;
{
std::vector<typename C::Scalar> flattened_leaves;
flattened_leaves.reserve(leaves.size() * LEAF_TUPLE_SIZE); flattened_leaves.reserve(leaves.size() * LEAF_TUPLE_SIZE);
for (const auto &l : leaves) for (const auto &l : leaves)
{ {
// TODO: implement without cloning // TODO: implement without cloning
flattened_leaves.emplace_back(curve.clone(l.O_x)); flattened_leaves.emplace_back(m_c2.clone(l.O_x));
flattened_leaves.emplace_back(curve.clone(l.I_x)); flattened_leaves.emplace_back(m_c2.clone(l.I_x));
flattened_leaves.emplace_back(curve.clone(l.C_x)); flattened_leaves.emplace_back(m_c2.clone(l.C_x));
} }
return flattened_leaves; return flattened_leaves;
}; };
template <typename C_POINTS, typename C_SCALARS> // TODO: move impl into cpp
static void extend_scalars_from_cycle_points(const C_POINTS &curve, TreeExtension get_tree_extension(const LastChunks &existing_last_chunks, const Leaves &new_leaves)
const std::vector<typename C_POINTS::Point> &points,
std::vector<typename C_SCALARS::Scalar> &scalars_out)
{
scalars_out.reserve(scalars_out.size() + points.size());
for (const auto &point : points)
{ {
// TODO: implement reading just the x coordinate of points on curves in curve cycle in C/C++ TreeExtension tree_extension;
typename C_SCALARS::Scalar scalar = curve.point_to_cycle_scalar(point);
scalars_out.push_back(std::move(scalar)); if (new_leaves.tuples.empty())
return tree_extension;
const auto &c1_last_chunks = existing_last_chunks.c1_last_chunks;
const auto &c2_last_chunks = existing_last_chunks.c2_last_chunks;
// Set the leaf start idx
tree_extension.leaves.start_idx = c2_last_chunks.empty()
? 0
: c2_last_chunks[0].child_layer_size;
// Copy the leaves
// TODO: don't copy here
tree_extension.leaves.tuples.reserve(new_leaves.tuples.size());
for (const auto &leaf : new_leaves.tuples)
{
tree_extension.leaves.tuples.emplace_back(LeafTuple{
.O_x = m_c2.clone(leaf.O_x),
.I_x = m_c2.clone(leaf.I_x),
.C_x = m_c2.clone(leaf.C_x)
});
} }
}
// TODO: move to tower_cycle auto &c1_layer_extensions_out = tree_extension.c1_layer_extensions;
template <typename C> auto &c2_layer_extensions_out = tree_extension.c2_layer_extensions;
static void extend_zeroes(const C &curve,
const std::size_t num_zeroes,
std::vector<typename C::Scalar> &zeroes_inout)
{
zeroes_inout.reserve(zeroes_inout.size() + num_zeroes);
for (std::size_t i = 0; i < num_zeroes; ++i) // Hash the leaf layer
zeroes_inout.emplace_back(curve.zero_scalar()); LayerExtension<C2> parents;
} this->hash_leaf_layer(c2_last_chunks.empty() ? nullptr : &c2_last_chunks[0],
new_leaves,
parents);
template <typename C> c2_layer_extensions_out.emplace_back(std::move(parents));
static typename C::Point get_new_parent(const C &curve,
const typename C::Chunk &new_children) // Check if we just added the root
{ if (c2_layer_extensions_out.back().hashes.size() == 1 && c2_layer_extensions_out.back().start_idx == 0)
return tree_extension;
// Alternate between hashing c2 children, c1 children, c2, c1, ...
bool parent_is_c1 = true;
std::size_t c1_last_idx = 0;
std::size_t c2_last_idx = 0;
// TODO: calculate max number of layers it should take to add all leaves (existing leaves + new leaves)
while (true)
{
if (parent_is_c1)
{
CHECK_AND_ASSERT_THROW_MES(c2_layer_extensions_out.size() > c2_last_idx, "missing c2 layer");
LayerExtension<C1> c1_layer_extension;
this->hash_layer<C2, C1>(m_c2,
m_c1,
(c2_last_chunks.size() <= c2_last_idx) ? nullptr : &c2_last_chunks[c2_last_idx],
(c1_last_chunks.size() <= c1_last_idx) ? nullptr : &c1_last_chunks[c1_last_idx],
c2_layer_extensions_out[c2_last_idx],
m_c1_width,
c1_layer_extension);
c1_layer_extensions_out.emplace_back(std::move(c1_layer_extension));
// Check if we just added the root
if (c1_layer_extensions_out.back().hashes.size() == 1 && c1_layer_extensions_out.back().start_idx == 0)
return tree_extension;
++c2_last_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_layer_extensions_out.size() > c1_last_idx, "missing c1 layer");
LayerExtension<C2> c2_layer_extension;
this->hash_layer<C1, C2>(m_c1,
m_c2,
(c1_last_chunks.size() <= c1_last_idx) ? nullptr : &c1_last_chunks[c1_last_idx],
(c2_last_chunks.size() <= c2_last_idx) ? nullptr : &c2_last_chunks[c2_last_idx],
c1_layer_extensions_out[c1_last_idx],
m_c2_width,
c2_layer_extension);
c2_layer_extensions_out.emplace_back(std::move(c2_layer_extension));
// Check if we just added the root
if (c2_layer_extensions_out.back().hashes.size() == 1 && c2_layer_extensions_out.back().start_idx == 0)
return tree_extension;
++c1_last_idx;
}
parent_is_c1 = !parent_is_c1;
}
}
private:
// TODO: move impl into cpp
template <typename C>
typename C::Point get_new_parent(const C &curve,
const typename C::Chunk &new_children) const
{
// New parent means no prior children, fill priors with 0 // New parent means no prior children, fill priors with 0
std::vector<typename C::Scalar> prior_children; std::vector<typename C::Scalar> prior_children;
extend_zeroes(curve, new_children.size(), prior_children); fcmp::tower_cycle::extend_zeroes(curve, new_children.size(), prior_children);
return curve.hash_grow( return curve.hash_grow(
curve.GENERATORS, curve.GENERATORS,
@ -189,38 +271,37 @@ static typename C::Point get_new_parent(const C &curve,
typename C::Chunk{prior_children.data(), prior_children.size()}, typename C::Chunk{prior_children.data(), prior_children.size()},
new_children new_children
); );
} }
// TODO: make part of CurveTrees class // TODO: move impl into cpp
template <typename C> typename C2::Point get_first_leaf_parent(const typename C2::Chunk &new_children,
static typename C::Point get_first_leaf_parent(const C &curve, const LastChunkData<C2> *last_chunk_ptr) const
const typename C::Chunk &new_children, {
const LastChunkData<C> *last_chunk_ptr)
{
// If no last chunk exists, or if the last chunk is already full, then we can get a new parent // If no last chunk exists, or if the last chunk is already full, then we can get a new parent
if (last_chunk_ptr == nullptr || last_chunk_ptr->child_offset == 0) if (last_chunk_ptr == nullptr || last_chunk_ptr->child_offset == 0)
return get_new_parent<C>(curve, new_children); return get_new_parent<C2>(m_c2, new_children);
// There won't be any existing children when growing the leaf layer, fill priors with 0 // There won't be any existing children when growing the leaf layer, fill priors with 0
std::vector<typename C::Scalar> prior_children; std::vector<typename C2::Scalar> prior_children;
extend_zeroes(curve, new_children.size(), prior_children); fcmp::tower_cycle::extend_zeroes(m_c2, new_children.size(), prior_children);
return curve.hash_grow( return m_c2.hash_grow(
curve.GENERATORS, m_c2.GENERATORS,
last_chunk_ptr->last_parent, last_chunk_ptr->last_parent,
last_chunk_ptr->child_offset, last_chunk_ptr->child_offset,
typename C::Chunk{prior_children.data(), prior_children.size()}, typename C2::Chunk{prior_children.data(), prior_children.size()},
new_children new_children
); );
} }
// TODO: make part of CurveTrees class // TODO: move impl into cpp
template <typename C> template <typename C>
static typename C::Point get_first_non_leaf_parent(const C &curve, typename C::Point get_first_non_leaf_parent(const C &curve,
const typename C::Chunk &new_children, const typename C::Chunk &new_children,
const std::size_t chunk_width,
const bool child_layer_last_hash_updated, const bool child_layer_last_hash_updated,
const LastChunkData<C> *last_chunk_ptr) const LastChunkData<C> *last_chunk_ptr) const
{ {
// If no last chunk exists, we can get a new parent // If no last chunk exists, we can get a new parent
if (last_chunk_ptr == nullptr) if (last_chunk_ptr == nullptr)
return get_new_parent<C>(curve, new_children); return get_new_parent<C>(curve, new_children);
@ -233,17 +314,17 @@ static typename C::Point get_first_non_leaf_parent(const C &curve,
// If the last chunk has updated children in it, then we need to get the delta to the old children, and // If the last chunk has updated children in it, then we need to get the delta to the old children, and
// subtract the offset by 1 since we're updating the prior last hash // subtract the offset by 1 since we're updating the prior last hash
prior_children.emplace_back(curve.clone(last_chunk_ptr->last_child)); prior_children.emplace_back(curve.clone(last_chunk_ptr->last_child));
offset = offset > 0 ? (offset - 1) : (curve.WIDTH - 1); offset = offset > 0 ? (offset - 1) : (chunk_width - 1);
// Extend prior children by zeroes for any additional new children, since they must be new // Extend prior children by zeroes for any additional new children, since they must be new
if (new_children.size() > 1) if (new_children.size() > 1)
extend_zeroes(curve, new_children.size() - 1, prior_children); fcmp::tower_cycle::extend_zeroes(curve, new_children.size() - 1, prior_children);
} }
else if (offset > 0) else if (offset > 0)
{ {
// If we're updating the parent hash and no children were updated, then we're just adding new children // If we're updating the parent hash and no children were updated, then we're just adding new children
// to the existing last chunk and can fill priors with 0 // to the existing last chunk and can fill priors with 0
extend_zeroes(curve, new_children.size(), prior_children); fcmp::tower_cycle::extend_zeroes(curve, new_children.size(), prior_children);
} }
else else
{ {
@ -258,24 +339,24 @@ static typename C::Point get_first_non_leaf_parent(const C &curve,
typename C::Chunk{prior_children.data(), prior_children.size()}, typename C::Chunk{prior_children.data(), prior_children.size()},
new_children new_children
); );
} }
// TODO: look into consolidating hash_layer and hash_leaf_layer into 1 function // TODO: look into consolidating hash_layer and hash_leaf_layer into 1 function
// TODO: make part of CurveTrees class // TODO: move impl into cpp
template<typename C_CHILD, typename C_PARENT> template<typename C_CHILD, typename C_PARENT>
void hash_layer(const C_CHILD &c_child, void hash_layer(const C_CHILD &c_child,
const C_PARENT &c_parent, const C_PARENT &c_parent,
const LastChunkData<C_CHILD> *last_child_chunk_ptr, const LastChunkData<C_CHILD> *last_child_chunk_ptr,
const LastChunkData<C_PARENT> *last_parent_chunk_ptr, const LastChunkData<C_PARENT> *last_parent_chunk_ptr,
const LayerExtension<C_CHILD> &children, const LayerExtension<C_CHILD> &children,
const std::size_t chunk_width,
LayerExtension<C_PARENT> &parents_out) LayerExtension<C_PARENT> &parents_out)
{ {
parents_out.start_idx = (last_parent_chunk_ptr == nullptr) ? 0 : last_parent_chunk_ptr->parent_layer_size; parents_out.start_idx = (last_parent_chunk_ptr == nullptr) ? 0 : last_parent_chunk_ptr->parent_layer_size;
parents_out.hashes.clear(); parents_out.hashes.clear();
CHECK_AND_ASSERT_THROW_MES(!children.hashes.empty(), "empty children hashes"); CHECK_AND_ASSERT_THROW_MES(!children.hashes.empty(), "empty children hashes");
const std::size_t max_chunk_size = c_parent.WIDTH;
std::size_t offset = (last_parent_chunk_ptr == nullptr) ? 0 : last_parent_chunk_ptr->child_offset; std::size_t offset = (last_parent_chunk_ptr == nullptr) ? 0 : last_parent_chunk_ptr->child_offset;
// TODO: try to simplify the approach to avoid edge cases // TODO: try to simplify the approach to avoid edge cases
@ -302,9 +383,9 @@ void hash_layer(const C_CHILD &c_child,
// TODO: clean this up so I don't have to do it twice here and in get_first_non_leaf_parent // TODO: clean this up so I don't have to do it twice here and in get_first_non_leaf_parent
// The offset needs to be brought back because we're going to start with the prior hash, and so the chunk // The offset needs to be brought back because we're going to start with the prior hash, and so the chunk
// will start from there and may need 1 more to fill // will start from there and may need 1 more to fill
CHECK_AND_ASSERT_THROW_MES(max_chunk_size > offset, "unexpected offset"); CHECK_AND_ASSERT_THROW_MES(chunk_width > offset, "unexpected offset");
if (child_layer_last_hash_updated) if (child_layer_last_hash_updated)
offset = offset > 0 ? (offset - 1) : (max_chunk_size - 1); offset = offset > 0 ? (offset - 1) : (chunk_width - 1);
// If we're creating a *new* root at the existing root layer, we may need to include the *existing* root when // If we're creating a *new* root at the existing root layer, we may need to include the *existing* root when
// hashing the *existing* root layer // hashing the *existing* root layer
@ -321,10 +402,10 @@ void hash_layer(const C_CHILD &c_child,
} }
// Convert child points to scalars // Convert child points to scalars
extend_scalars_from_cycle_points<C_CHILD, C_PARENT>(c_child, children.hashes, child_scalars); tower_cycle::extend_scalars_from_cycle_points<C_CHILD, C_PARENT>(c_child, children.hashes, child_scalars);
// See how many children we need to fill up the existing last chunk // See how many children we need to fill up the existing last chunk
std::size_t chunk_size = std::min(child_scalars.size(), max_chunk_size - offset); std::size_t chunk_size = std::min(child_scalars.size(), chunk_width - offset);
MDEBUG("Starting chunk_size: " << chunk_size << " , num child scalars: " << child_scalars.size() MDEBUG("Starting chunk_size: " << chunk_size << " , num child scalars: " << child_scalars.size()
<< " , offset: " << offset); << " , offset: " << offset);
@ -340,7 +421,7 @@ void hash_layer(const C_CHILD &c_child,
// Hash the chunk of children // Hash the chunk of children
typename C_PARENT::Point chunk_hash = chunk_start_idx == 0 typename C_PARENT::Point chunk_hash = chunk_start_idx == 0
? get_first_non_leaf_parent<C_PARENT>(c_parent, chunk, child_layer_last_hash_updated, last_parent_chunk_ptr) ? get_first_non_leaf_parent<C_PARENT>(c_parent, chunk, chunk_width, child_layer_last_hash_updated, last_parent_chunk_ptr)
: get_new_parent<C_PARENT>(c_parent, chunk); : get_new_parent<C_PARENT>(c_parent, chunk);
MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " result: " << c_parent.to_string(chunk_hash) MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " result: " << c_parent.to_string(chunk_hash)
@ -358,17 +439,15 @@ void hash_layer(const C_CHILD &c_child,
// Fill a complete chunk, or add the remaining new children to the last chunk // Fill a complete chunk, or add the remaining new children to the last chunk
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx < child_scalars.size(), "unexpected chunk start idx"); CHECK_AND_ASSERT_THROW_MES(chunk_start_idx < child_scalars.size(), "unexpected chunk start idx");
chunk_size = std::min(max_chunk_size, child_scalars.size() - chunk_start_idx); chunk_size = std::min(chunk_width, child_scalars.size() - chunk_start_idx);
}
} }
}
// TODO: make part of CurveTrees class // TODO: move impl into cpp
template<typename C2> void hash_leaf_layer(const LastChunkData<C2> *last_chunk_ptr,
void hash_leaf_layer(const C2 &c2, const Leaves &leaves,
const LastChunkData<C2> *last_chunk_ptr,
const Leaves<C2> &leaves,
LayerExtension<C2> &parents_out) LayerExtension<C2> &parents_out)
{ {
parents_out.start_idx = (last_chunk_ptr == nullptr) ? 0 : last_chunk_ptr->parent_layer_size; parents_out.start_idx = (last_chunk_ptr == nullptr) ? 0 : last_chunk_ptr->parent_layer_size;
parents_out.hashes.clear(); parents_out.hashes.clear();
@ -376,9 +455,9 @@ void hash_leaf_layer(const C2 &c2,
return; return;
// Flatten leaves [(O.x, I.x, C.x),(O.x, I.x, C.x),...] -> [scalar, scalar, scalar, scalar, scalar, scalar,...] // Flatten leaves [(O.x, I.x, C.x),(O.x, I.x, C.x),...] -> [scalar, scalar, scalar, scalar, scalar, scalar,...]
const std::vector<typename C2::Scalar> children = flatten_leaves<C2>(c2, leaves.tuples); const std::vector<typename C2::Scalar> children = flatten_leaves(leaves.tuples);
const std::size_t max_chunk_size = LEAF_LAYER_CHUNK_WIDTH; const std::size_t max_chunk_size = m_leaf_layer_chunk_width;
const std::size_t offset = (last_chunk_ptr == nullptr) ? 0 : last_chunk_ptr->child_offset; const std::size_t offset = (last_chunk_ptr == nullptr) ? 0 : last_chunk_ptr->child_offset;
// If we're adding new children to an existing last chunk, then we need to pull the parent start idx back 1 // If we're adding new children to an existing last chunk, then we need to pull the parent start idx back 1
@ -400,14 +479,14 @@ void hash_leaf_layer(const C2 &c2,
const typename C2::Chunk chunk{chunk_start, chunk_size}; const typename C2::Chunk chunk{chunk_start, chunk_size};
for (const auto &c : chunk) for (const auto &c : chunk)
MDEBUG("Hashing " << c2.to_string(c)); MDEBUG("Hashing " << m_c2.to_string(c));
// Hash the chunk of children // Hash the chunk of children
typename C2::Point chunk_hash = chunk_start_idx == 0 typename C2::Point chunk_hash = chunk_start_idx == 0
? get_first_leaf_parent<C2>(c2, chunk, last_chunk_ptr) ? get_first_leaf_parent(chunk, last_chunk_ptr)
: get_new_parent<C2>(c2, chunk); : get_new_parent<C2>(m_c2, chunk);
MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " result: " << c2.to_string(chunk_hash) MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " result: " << m_c2.to_string(chunk_hash)
<< " , chunk_size: " << chunk_size); << " , chunk_size: " << chunk_size);
// We've got our hash // We've got our hash
@ -424,458 +503,16 @@ void hash_leaf_layer(const C2 &c2,
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx < children.size(), "unexpected chunk start idx"); CHECK_AND_ASSERT_THROW_MES(chunk_start_idx < children.size(), "unexpected chunk start idx");
chunk_size = std::min(max_chunk_size, children.size() - chunk_start_idx); chunk_size = std::min(max_chunk_size, children.size() - chunk_start_idx);
} }
}
// TODO: make part of CurveTrees class
template<typename C1, typename C2>
TreeExtension<C1, C2> get_tree_extension(const LastChunks<C1, C2> &existing_last_chunks,
const Leaves<C2> &new_leaves,
const C1 &c1,
const C2 &c2)
{
TreeExtension<C1, C2> tree_extension;
if (new_leaves.tuples.empty())
return tree_extension;
const auto &c1_last_chunks = existing_last_chunks.c1_last_chunks;
const auto &c2_last_chunks = existing_last_chunks.c2_last_chunks;
// Set the leaf start idx
tree_extension.leaves.start_idx = c2_last_chunks.empty()
? 0
: c2_last_chunks[0].child_layer_size;
// Copy the leaves
// TODO: don't copy here
tree_extension.leaves.tuples.reserve(new_leaves.tuples.size());
for (const auto &leaf : new_leaves.tuples)
{
tree_extension.leaves.tuples.emplace_back(LeafTuple<C2>{
.O_x = c2.clone(leaf.O_x),
.I_x = c2.clone(leaf.I_x),
.C_x = c2.clone(leaf.C_x)
});
} }
auto &c1_layer_extensions_out = tree_extension.c1_layer_extensions; private:
auto &c2_layer_extensions_out = tree_extension.c2_layer_extensions; const C1 &m_c1;
const C2 &m_c2;
// Hash the leaf layer const std::size_t m_c1_width;
LayerExtension<C2> parents; const std::size_t m_c2_width;
hash_leaf_layer<C2>(c2,
c2_last_chunks.empty() ? nullptr : &c2_last_chunks[0],
new_leaves,
parents);
c2_layer_extensions_out.emplace_back(std::move(parents)); const std::size_t m_leaf_layer_chunk_width;
// Check if we just added the root
if (c2_layer_extensions_out.back().hashes.size() == 1 && c2_layer_extensions_out.back().start_idx == 0)
return tree_extension;
// Alternate between hashing c2 children, c1 children, c2, c1, ...
bool parent_is_c1 = true;
std::size_t c1_last_idx = 0;
std::size_t c2_last_idx = 0;
// TODO: calculate max number of layers it should take to add all leaves (existing leaves + new leaves)
while (true)
{
if (parent_is_c1)
{
CHECK_AND_ASSERT_THROW_MES(c2_layer_extensions_out.size() > c2_last_idx, "missing c2 layer");
LayerExtension<C1> c1_layer_extension;
hash_layer<C2, C1>(c2,
c1,
(c2_last_chunks.size() <= c2_last_idx) ? nullptr : &c2_last_chunks[c2_last_idx],
(c1_last_chunks.size() <= c1_last_idx) ? nullptr : &c1_last_chunks[c1_last_idx],
c2_layer_extensions_out[c2_last_idx],
c1_layer_extension);
c1_layer_extensions_out.emplace_back(std::move(c1_layer_extension));
// Check if we just added the root
if (c1_layer_extensions_out.back().hashes.size() == 1 && c1_layer_extensions_out.back().start_idx == 0)
return tree_extension;
++c2_last_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_layer_extensions_out.size() > c1_last_idx, "missing c1 layer");
LayerExtension<C2> c2_layer_extension;
hash_layer<C1, C2>(c1,
c2,
(c1_last_chunks.size() <= c1_last_idx) ? nullptr : &c1_last_chunks[c1_last_idx],
(c2_last_chunks.size() <= c2_last_idx) ? nullptr : &c2_last_chunks[c2_last_idx],
c1_layer_extensions_out[c1_last_idx],
c2_layer_extension);
c2_layer_extensions_out.emplace_back(std::move(c2_layer_extension));
// Check if we just added the root
if (c2_layer_extensions_out.back().hashes.size() == 1 && c2_layer_extensions_out.back().start_idx == 0)
return tree_extension;
++c1_last_idx;
}
parent_is_c1 = !parent_is_c1;
}
}
// TEST
template<typename C>
using Layer = std::vector<typename C::Point>;
// TEST
// A complete tree, useful for testing (can't fit the whole tree in memory otherwise)
template<typename C1, typename C2>
struct Tree final
{
std::vector<LeafTuple<C2>> leaves;
std::vector<Layer<C1>> c1_layers;
std::vector<Layer<C2>> c2_layers;
}; };
// TEST
template<typename C2>
LastChunkData<C2> get_last_leaf_chunk(const C2 &c2,
const std::vector<LeafTuple<C2>> &leaves,
const std::vector<typename C2::Point> &parent_layer)
{
CHECK_AND_ASSERT_THROW_MES(!leaves.empty(), "empty leaf layer");
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "empty leaf parent layer");
const std::size_t child_offset = (leaves.size() * LEAF_TUPLE_SIZE) % LEAF_LAYER_CHUNK_WIDTH;
const typename C2::Scalar &last_child = leaves.back().C_x;
const typename C2::Point &last_parent = parent_layer.back();
return LastChunkData<C2>{
.child_offset = child_offset,
.last_child = c2.clone(last_child),
.last_parent = c2.clone(last_parent),
.child_layer_size = leaves.size() * LEAF_TUPLE_SIZE,
.parent_layer_size = parent_layer.size()
};
}
// TEST
template<typename C_CHILD, typename C_PARENT>
LastChunkData<C_PARENT> get_last_child_layer_chunk(const C_CHILD &c_child,
const C_PARENT &c_parent,
const std::vector<typename C_CHILD::Point> &child_layer,
const std::vector<typename C_PARENT::Point> &parent_layer)
{
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "empty child layer");
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "empty parent layer");
const std::size_t child_offset = child_layer.size() % c_parent.WIDTH;
const typename C_CHILD::Point &last_child_point = child_layer.back();
const typename C_PARENT::Scalar &last_child = c_child.point_to_cycle_scalar(last_child_point);
const typename C_PARENT::Point &last_parent = parent_layer.back();
return LastChunkData<C_PARENT>{
.child_offset = child_offset,
.last_child = c_parent.clone(last_child),
.last_parent = c_parent.clone(last_parent),
.child_layer_size = child_layer.size(),
.parent_layer_size = parent_layer.size()
};
}
// TODO: implement in the db, never want the entire tree in memory
// TEST
template<typename C1, typename C2>
LastChunks<C1, C2> get_last_chunks(const C1 &c1,
const C2 &c2,
const Tree<C1, C2> &tree)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
// We started with c2 and then alternated, so c2 is the same size or 1 higher than c1
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
"unexpected number of curve layers");
LastChunks<C1, C2> last_chunks;
auto &c1_last_chunks_out = last_chunks.c1_last_chunks;
auto &c2_last_chunks_out = last_chunks.c2_last_chunks;
c1_last_chunks_out.reserve(c1_layers.size());
c2_last_chunks_out.reserve(c2_layers.size());
// First push the last leaf chunk data into c2 chunks
CHECK_AND_ASSERT_THROW_MES(!c2_layers.empty(), "empty curve 2 layers");
auto last_leaf_chunk = get_last_leaf_chunk<C2>(c2,
leaves,
c2_layers[0]);
c2_last_chunks_out.push_back(std::move(last_leaf_chunk));
// Next parents will be c1
bool parent_is_c1 = true;
// If there are no c1 layers, we're done
if (c1_layers.empty())
return last_chunks;
// Then get last chunks up until the root
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
while (c1_last_chunks_out.size() < c1_layers.size() || c2_last_chunks_out.size() < c2_layers.size())
{
CHECK_AND_ASSERT_THROW_MES(c1_layers.size() > c1_idx, "missing c1 layer");
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() > c2_idx, "missing c2 layer");
// TODO: template the below if statement into another function
if (parent_is_c1)
{
const Layer<C2> &child_layer = c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<C1> &parent_layer = c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
auto last_parent_chunk = get_last_child_layer_chunk<C2, C1>(c2,
c1,
child_layer,
parent_layer);
c1_last_chunks_out.push_back(std::move(last_parent_chunk));
++c2_idx;
}
else
{
const Layer<C1> &child_layer = c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<C2> &parent_layer = c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
auto last_parent_chunk = get_last_child_layer_chunk<C1, C2>(c1,
c2,
child_layer,
parent_layer);
c2_last_chunks_out.push_back(std::move(last_parent_chunk));
++c1_idx;
}
// Alternate curves every iteration
parent_is_c1 = !parent_is_c1;
}
CHECK_AND_ASSERT_THROW_MES(c1_last_chunks_out.size() == c1_layers.size(), "unexepected c1 last chunks");
CHECK_AND_ASSERT_THROW_MES(c2_last_chunks_out.size() == c2_layers.size(), "unexepected c2 last chunks");
return last_chunks;
}
// TODO: this is only useful for testsing, since can't fit entire tree in memory
// TEST
template<typename C1, typename C2>
void extend_tree(const TreeExtension<C1, C2> &tree_extension,
const C1 &c1,
const C2 &c2,
Tree<C1, C2> &tree_inout)
{
// Add the leaves
CHECK_AND_ASSERT_THROW_MES((tree_inout.leaves.size() * LEAF_TUPLE_SIZE) == tree_extension.leaves.start_idx,
"unexpected leaf start idx");
tree_inout.leaves.reserve(tree_inout.leaves.size() + tree_extension.leaves.tuples.size());
for (const auto &leaf : tree_extension.leaves.tuples)
{
tree_inout.leaves.emplace_back(LeafTuple<C2>{
.O_x = c2.clone(leaf.O_x),
.I_x = c2.clone(leaf.I_x),
.C_x = c2.clone(leaf.C_x)
});
}
// Add the layers
const auto &c2_extensions = tree_extension.c2_layer_extensions;
const auto &c1_extensions = tree_extension.c1_layer_extensions;
CHECK_AND_ASSERT_THROW_MES(!c2_extensions.empty(), "empty c2 extensions");
bool use_c2 = true;
std::size_t c2_idx = 0;
std::size_t c1_idx = 0;
for (std::size_t i = 0; i < (c2_extensions.size() + c1_extensions.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer extension");
const LayerExtension<C2> &c2_ext = c2_extensions[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!c2_ext.hashes.empty(), "empty c2 layer extension");
CHECK_AND_ASSERT_THROW_MES(c2_idx <= tree_inout.c2_layers.size(), "missing c2 layer");
if (tree_inout.c2_layers.size() == c2_idx)
tree_inout.c2_layers.emplace_back(Layer<C2>{});
auto &c2_inout = tree_inout.c2_layers[c2_idx];
const bool started_after_tip = (c2_inout.size() == c2_ext.start_idx);
const bool started_at_tip = (c2_inout.size() == (c2_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c2 layer start");
// We updated the last hash
if (started_at_tip)
c2_inout.back() = c2.clone(c2_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c2_ext.hashes.size(); ++i)
c2_inout.emplace_back(c2.clone(c2_ext.hashes[i]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer extension");
const LayerExtension<C1> &c1_ext = c1_extensions[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!c1_ext.hashes.empty(), "empty c1 layer extension");
CHECK_AND_ASSERT_THROW_MES(c1_idx <= tree_inout.c1_layers.size(), "missing c1 layer");
if (tree_inout.c1_layers.size() == c1_idx)
tree_inout.c1_layers.emplace_back(Layer<C1>{});
auto &c1_inout = tree_inout.c1_layers[c1_idx];
const bool started_after_tip = (c1_inout.size() == c1_ext.start_idx);
const bool started_at_tip = (c1_inout.size() == (c1_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c1 layer start");
// We updated the last hash
if (started_at_tip)
c1_inout.back() = c1.clone(c1_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c1_ext.hashes.size(); ++i)
c1_inout.emplace_back(c1.clone(c1_ext.hashes[i]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
// TEST
template<typename C_PARENT>
bool validate_layer(const C_PARENT &c_parent,
const Layer<C_PARENT> &parents,
const std::vector<typename C_PARENT::Scalar> &child_scalars,
const std::size_t max_chunk_size)
{
// Hash chunk of children scalars, then see if the hash matches up to respective parent
std::size_t chunk_start_idx = 0;
for (std::size_t i = 0; i < parents.size(); ++i)
{
CHECK_AND_ASSERT_MES(child_scalars.size() > chunk_start_idx, false, "chunk start too high");
const std::size_t chunk_size = std::min(child_scalars.size() - chunk_start_idx, max_chunk_size);
CHECK_AND_ASSERT_MES(child_scalars.size() >= (chunk_start_idx + chunk_size), false, "chunk size too large");
const typename C_PARENT::Point &parent = parents[i];
const auto chunk_start = child_scalars.data() + chunk_start_idx;
const typename C_PARENT::Chunk chunk{chunk_start, chunk_size};
const typename C_PARENT::Point chunk_hash = get_new_parent(c_parent, chunk);
const auto actual_bytes = c_parent.to_bytes(parent);
const auto expected_bytes = c_parent.to_bytes(chunk_hash);
CHECK_AND_ASSERT_MES(actual_bytes == expected_bytes, false, "unexpected hash");
chunk_start_idx += chunk_size;
}
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx == child_scalars.size(), "unexpected ending chunk start idx");
return true;
}
// TEST
template<typename C1, typename C2>
bool validate_tree(const Tree<C1, C2> &tree, const C1 &c1, const C2 &c2)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
CHECK_AND_ASSERT_MES(!leaves.empty(), false, "must have at least 1 leaf in tree");
CHECK_AND_ASSERT_MES(!c2_layers.empty(), false, "must have at least 1 c2 layer in tree");
CHECK_AND_ASSERT_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
false, "unexpected mismatch of c2 and c1 layers");
// Verify root has 1 member in it
const bool c2_is_root = c2_layers.size() > c1_layers.size();
CHECK_AND_ASSERT_MES(c2_is_root ? c2_layers.back().size() == 1 : c1_layers.back().size() == 1, false,
"root must have 1 member in it");
// Iterate from root down to layer above leaves, and check hashes match up correctly
bool parent_is_c2 = c2_is_root;
std::size_t c2_idx = c2_layers.size() - 1;
std::size_t c1_idx = c1_layers.empty() ? 0 : (c1_layers.size() - 1);
for (std::size_t i = 1; i < (c2_layers.size() + c1_layers.size()); ++i)
{
// TODO: implement templated function for below if statement
if (parent_is_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
const Layer<C2> &parents = c2_layers[c2_idx];
const Layer<C1> &children = c1_layers[c1_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c2_idx " + std::to_string(c2_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c1_idx " + std::to_string(c1_idx));
std::vector<typename C2::Scalar> child_scalars;
extend_scalars_from_cycle_points<C1, C2>(c1, children, child_scalars);
const bool valid = validate_layer<C2>(c2, parents, child_scalars, c2.WIDTH);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c2_idx " + std::to_string(c2_idx));
--c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
const Layer<C1> &parents = c1_layers[c1_idx];
const Layer<C2> &children = c2_layers[c2_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c1_idx " + std::to_string(c1_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c2_idx " + std::to_string(c2_idx));
std::vector<typename C1::Scalar> child_scalars;
extend_scalars_from_cycle_points<C2, C1>(c2, children, child_scalars);
const bool valid = validate_layer<C1>(c1, parents, child_scalars, c1.WIDTH);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c1_idx " + std::to_string(c1_idx));
--c1_idx;
}
parent_is_c2 = !parent_is_c2;
}
// Now validate leaves
return validate_layer<C2>(c2, c2_layers[0], flatten_leaves<C2>(c2, leaves), LEAF_LAYER_CHUNK_WIDTH);
}
} //namespace curve_trees
} //namespace fcmp } //namespace fcmp

View File

@ -64,9 +64,6 @@ static struct Helios final
const Generators GENERATORS = fcmp_rust::random_helios_generators(); const Generators GENERATORS = fcmp_rust::random_helios_generators();
const Point HASH_INIT_POINT = fcmp_rust::random_helios_hash_init_point(); const Point HASH_INIT_POINT = fcmp_rust::random_helios_hash_init_point();
// TODO: use correct value
static const std::size_t WIDTH = 5;
// Helios point x-coordinates are Selene scalars // Helios point x-coordinates are Selene scalars
SeleneScalar point_to_cycle_scalar(const Point &point) const; SeleneScalar point_to_cycle_scalar(const Point &point) const;
@ -118,9 +115,6 @@ static struct Selene final
const Generators GENERATORS = fcmp_rust::random_selene_generators(); const Generators GENERATORS = fcmp_rust::random_selene_generators();
const Point HASH_INIT_POINT = fcmp_rust::random_selene_hash_init_point(); const Point HASH_INIT_POINT = fcmp_rust::random_selene_hash_init_point();
// TODO: use correct value
static const std::size_t WIDTH = 5;
// Ed25519 point x-coordinates are Selene scalars // Ed25519 point x-coordinates are Selene scalars
SeleneScalar ed_25519_point_to_scalar(const crypto::ec_point &point) const; SeleneScalar ed_25519_point_to_scalar(const crypto::ec_point &point) const;
@ -160,5 +154,32 @@ static struct Selene final
}// namespace selene }// namespace selene
//---------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------
template <typename C>
static void extend_zeroes(const C &curve,
const std::size_t num_zeroes,
std::vector<typename C::Scalar> &zeroes_inout)
{
zeroes_inout.reserve(zeroes_inout.size() + num_zeroes);
for (std::size_t i = 0; i < num_zeroes; ++i)
zeroes_inout.emplace_back(curve.zero_scalar());
}
//----------------------------------------------------------------------------------------------------------------------
template <typename C_POINTS, typename C_SCALARS>
static void extend_scalars_from_cycle_points(const C_POINTS &curve,
const std::vector<typename C_POINTS::Point> &points,
std::vector<typename C_SCALARS::Scalar> &scalars_out)
{
scalars_out.reserve(scalars_out.size() + points.size());
for (const auto &point : points)
{
// TODO: implement reading just the x coordinate of points on curves in curve cycle in C/C++
typename C_SCALARS::Scalar scalar = curve.point_to_cycle_scalar(point);
scalars_out.push_back(std::move(scalar));
}
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
}//namespace curves }//namespace curves
}//namespace fcmp }//namespace fcmp

View File

@ -28,38 +28,393 @@
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "fcmp/curve_trees.h" #include "curve_trees.h"
#include "fcmp/tower_cycle.h"
#include "misc_log_ex.h"
#include <cmath> #include <cmath>
template<typename C2> //----------------------------------------------------------------------------------------------------------------------
static const fcmp::curve_trees::Leaves<C2> generate_leaves(const C2 &curve, const std::size_t num_leaves) //----------------------------------------------------------------------------------------------------------------------
// CurveTreesUnitTest helpers
//----------------------------------------------------------------------------------------------------------------------
template<typename C>
static CurveTreesV1::LastChunkData<C> get_last_child_layer_chunk(const C &curve,
const std::size_t child_layer_size,
const std::size_t parent_layer_size,
const std::size_t chunk_width,
const typename C::Scalar &last_child,
const typename C::Point &last_parent)
{ {
std::vector<fcmp::curve_trees::LeafTuple<C2>> tuples; CHECK_AND_ASSERT_THROW_MES(child_layer_size > 0, "empty child layer");
tuples.reserve(num_leaves); CHECK_AND_ASSERT_THROW_MES(parent_layer_size > 0, "empty parent layer");
for (std::size_t i = 0; i < num_leaves; ++i) const std::size_t child_offset = child_layer_size % chunk_width;
{
// Generate random output tuple
crypto::secret_key o,c;
crypto::public_key O,C;
crypto::generate_keys(O, o, o, false);
crypto::generate_keys(C, c, c, false);
auto leaf_tuple = fcmp::curve_trees::output_to_leaf_tuple<C2>(curve, O, C); return CurveTreesV1::LastChunkData<C>{
.child_offset = child_offset,
tuples.emplace_back(std::move(leaf_tuple)); .last_child = curve.clone(last_child),
} .last_parent = curve.clone(last_parent),
.child_layer_size = child_layer_size,
return fcmp::curve_trees::Leaves<C2>{ .parent_layer_size = parent_layer_size
.start_idx = 0,
.tuples = std::move(tuples)
}; };
} }
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// CurveTreesUnitTest implementations
//----------------------------------------------------------------------------------------------------------------------
CurveTreesV1::LastChunks CurveTreesUnitTest::get_last_chunks(const CurveTreesUnitTest::Tree &tree)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
static void log_tree_extension(const fcmp::curve_trees::TreeExtension<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene> &tree_extension) // We started with c2 and then alternated, so c2 is the same size or 1 higher than c1
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
"unexpected number of curve layers");
CurveTreesV1::LastChunks last_chunks;
if (c2_layers.empty())
return last_chunks;
auto &c1_last_chunks_out = last_chunks.c1_last_chunks;
auto &c2_last_chunks_out = last_chunks.c2_last_chunks;
c1_last_chunks_out.reserve(c1_layers.size());
c2_last_chunks_out.reserve(c2_layers.size());
// First push the last leaf chunk data into c2 chunks
auto last_leaf_chunk = get_last_child_layer_chunk<Selene>(m_curve_trees.m_c2,
/*child_layer_size */ leaves.size() * CurveTreesV1::LEAF_TUPLE_SIZE,
/*parent_layer_size*/ c2_layers[0].size(),
/*chunk_width */ m_curve_trees.m_leaf_layer_chunk_width,
/*last_child */ leaves.back().C_x,
/*last_parent */ c2_layers[0].back());
c2_last_chunks_out.push_back(std::move(last_leaf_chunk));
// If there are no c1 layers, we're done
if (c1_layers.empty())
return last_chunks;
// Next parents will be c1
bool parent_is_c1 = true;
// Then get last chunks up until the root
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
while (c1_last_chunks_out.size() < c1_layers.size() || c2_last_chunks_out.size() < c2_layers.size())
{
CHECK_AND_ASSERT_THROW_MES(c1_layers.size() > c1_idx, "missing c1 layer");
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() > c2_idx, "missing c2 layer");
// TODO: template the below if statement into another function
if (parent_is_c1)
{
const Layer<Selene> &child_layer = c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<Helios> &parent_layer = c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
const auto &last_child = m_curve_trees.m_c2.point_to_cycle_scalar(child_layer.back());
auto last_parent_chunk = get_last_child_layer_chunk<Helios>(m_curve_trees.m_c1,
child_layer.size(),
parent_layer.size(),
m_curve_trees.m_c1_width,
last_child,
parent_layer.back());
c1_last_chunks_out.push_back(std::move(last_parent_chunk));
++c2_idx;
}
else
{
const Layer<Helios> &child_layer = c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<Selene> &parent_layer = c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
const auto &last_child = m_curve_trees.m_c1.point_to_cycle_scalar(child_layer.back());
auto last_parent_chunk = get_last_child_layer_chunk<Selene>(m_curve_trees.m_c2,
child_layer.size(),
parent_layer.size(),
m_curve_trees.m_c2_width,
last_child,
parent_layer.back());
c2_last_chunks_out.push_back(std::move(last_parent_chunk));
++c1_idx;
}
// Alternate curves every iteration
parent_is_c1 = !parent_is_c1;
}
CHECK_AND_ASSERT_THROW_MES(c1_last_chunks_out.size() == c1_layers.size(), "unexpected c1 last chunks");
CHECK_AND_ASSERT_THROW_MES(c2_last_chunks_out.size() == c2_layers.size(), "unexpected c2 last chunks");
return last_chunks;
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesUnitTest::extend_tree(const CurveTreesV1::TreeExtension &tree_extension,
CurveTreesUnitTest::Tree &tree_inout)
{
// Add the leaves
const std::size_t init_num_leaves = tree_inout.leaves.size() * m_curve_trees.LEAF_TUPLE_SIZE;
CHECK_AND_ASSERT_THROW_MES(init_num_leaves == tree_extension.leaves.start_idx,
"unexpected leaf start idx");
tree_inout.leaves.reserve(tree_inout.leaves.size() + tree_extension.leaves.tuples.size());
for (const auto &leaf : tree_extension.leaves.tuples)
{
tree_inout.leaves.emplace_back(CurveTreesV1::LeafTuple{
.O_x = m_curve_trees.m_c2.clone(leaf.O_x),
.I_x = m_curve_trees.m_c2.clone(leaf.I_x),
.C_x = m_curve_trees.m_c2.clone(leaf.C_x)
});
}
// Add the layers
const auto &c2_extensions = tree_extension.c2_layer_extensions;
const auto &c1_extensions = tree_extension.c1_layer_extensions;
CHECK_AND_ASSERT_THROW_MES(!c2_extensions.empty(), "empty c2 extensions");
bool use_c2 = true;
std::size_t c2_idx = 0;
std::size_t c1_idx = 0;
for (std::size_t i = 0; i < (c2_extensions.size() + c1_extensions.size()); ++i)
{
// TODO: template below if statement
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer extension");
const CurveTreesV1::LayerExtension<Selene> &c2_ext = c2_extensions[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!c2_ext.hashes.empty(), "empty c2 layer extension");
CHECK_AND_ASSERT_THROW_MES(c2_idx <= tree_inout.c2_layers.size(), "missing c2 layer");
if (tree_inout.c2_layers.size() == c2_idx)
tree_inout.c2_layers.emplace_back(Layer<Selene>{});
auto &c2_inout = tree_inout.c2_layers[c2_idx];
const bool started_after_tip = (c2_inout.size() == c2_ext.start_idx);
const bool started_at_tip = (c2_inout.size() == (c2_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c2 layer start");
// We updated the last hash
if (started_at_tip)
c2_inout.back() = m_curve_trees.m_c2.clone(c2_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c2_ext.hashes.size(); ++i)
c2_inout.emplace_back(m_curve_trees.m_c2.clone(c2_ext.hashes[i]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer extension");
const CurveTreesV1::LayerExtension<Helios> &c1_ext = c1_extensions[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!c1_ext.hashes.empty(), "empty c1 layer extension");
CHECK_AND_ASSERT_THROW_MES(c1_idx <= tree_inout.c1_layers.size(), "missing c1 layer");
if (tree_inout.c1_layers.size() == c1_idx)
tree_inout.c1_layers.emplace_back(Layer<Helios>{});
auto &c1_inout = tree_inout.c1_layers[c1_idx];
const bool started_after_tip = (c1_inout.size() == c1_ext.start_idx);
const bool started_at_tip = (c1_inout.size() == (c1_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c1 layer start");
// We updated the last hash
if (started_at_tip)
c1_inout.back() = m_curve_trees.m_c1.clone(c1_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c1_ext.hashes.size(); ++i)
c1_inout.emplace_back(m_curve_trees.m_c1.clone(c1_ext.hashes[i]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
template<typename C_PARENT>
bool CurveTreesUnitTest::validate_layer(const C_PARENT &c_parent,
const CurveTreesUnitTest::Layer<C_PARENT> &parents,
const std::vector<typename C_PARENT::Scalar> &child_scalars,
const std::size_t max_chunk_size)
{
// Hash chunk of children scalars, then see if the hash matches up to respective parent
std::size_t chunk_start_idx = 0;
for (std::size_t i = 0; i < parents.size(); ++i)
{
CHECK_AND_ASSERT_MES(child_scalars.size() > chunk_start_idx, false, "chunk start too high");
const std::size_t chunk_size = std::min(child_scalars.size() - chunk_start_idx, max_chunk_size);
CHECK_AND_ASSERT_MES(child_scalars.size() >= (chunk_start_idx + chunk_size), false, "chunk size too large");
const typename C_PARENT::Point &parent = parents[i];
const auto chunk_start = child_scalars.data() + chunk_start_idx;
const typename C_PARENT::Chunk chunk{chunk_start, chunk_size};
const typename C_PARENT::Point chunk_hash = m_curve_trees.get_new_parent(c_parent, chunk);
const auto actual_bytes = c_parent.to_bytes(parent);
const auto expected_bytes = c_parent.to_bytes(chunk_hash);
CHECK_AND_ASSERT_MES(actual_bytes == expected_bytes, false, "unexpected hash");
chunk_start_idx += chunk_size;
}
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx == child_scalars.size(), "unexpected ending chunk start idx");
return true;
}
//----------------------------------------------------------------------------------------------------------------------
bool CurveTreesUnitTest::validate_tree(const CurveTreesUnitTest::Tree &tree)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
CHECK_AND_ASSERT_MES(!leaves.empty(), false, "must have at least 1 leaf in tree");
CHECK_AND_ASSERT_MES(!c2_layers.empty(), false, "must have at least 1 c2 layer in tree");
CHECK_AND_ASSERT_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
false, "unexpected mismatch of c2 and c1 layers");
// Verify root has 1 member in it
const bool c2_is_root = c2_layers.size() > c1_layers.size();
CHECK_AND_ASSERT_MES(c2_is_root ? c2_layers.back().size() == 1 : c1_layers.back().size() == 1, false,
"root must have 1 member in it");
// Iterate from root down to layer above leaves, and check hashes match up correctly
bool parent_is_c2 = c2_is_root;
std::size_t c2_idx = c2_layers.size() - 1;
std::size_t c1_idx = c1_layers.empty() ? 0 : (c1_layers.size() - 1);
for (std::size_t i = 1; i < (c2_layers.size() + c1_layers.size()); ++i)
{
// TODO: implement templated function for below if statement
if (parent_is_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
const Layer<Selene> &parents = c2_layers[c2_idx];
const Layer<Helios> &children = c1_layers[c1_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c2_idx " + std::to_string(c2_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c1_idx " + std::to_string(c1_idx));
std::vector<Selene::Scalar> child_scalars;
fcmp::tower_cycle::extend_scalars_from_cycle_points<Helios, Selene>(m_curve_trees.m_c1,
children,
child_scalars);
const bool valid = this->validate_layer<Selene>(m_curve_trees.m_c2,
parents,
child_scalars,
m_curve_trees.m_c2_width);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c2_idx " + std::to_string(c2_idx));
--c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
const Layer<Helios> &parents = c1_layers[c1_idx];
const Layer<Selene> &children = c2_layers[c2_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c1_idx " + std::to_string(c1_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c2_idx " + std::to_string(c2_idx));
std::vector<Helios::Scalar> child_scalars;
fcmp::tower_cycle::extend_scalars_from_cycle_points<Selene, Helios>(m_curve_trees.m_c2,
children,
child_scalars);
const bool valid = this->validate_layer<Helios>(
m_curve_trees.m_c1,
parents,
child_scalars,
m_curve_trees.m_c1_width);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c1_idx " + std::to_string(c1_idx));
--c1_idx;
}
parent_is_c2 = !parent_is_c2;
}
// Now validate leaves
return this->validate_layer<Selene>(m_curve_trees.m_c2,
c2_layers[0],
m_curve_trees.flatten_leaves(leaves),
m_curve_trees.m_leaf_layer_chunk_width);
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// Logging helpers
//----------------------------------------------------------------------------------------------------------------------
static void log_last_chunks(const CurveTreesV1::LastChunks &last_chunks)
{
const auto &c1_last_chunks = last_chunks.c1_last_chunks;
const auto &c2_last_chunks = last_chunks.c2_last_chunks;
MDEBUG("Total of " << c1_last_chunks.size() << " Helios last chunks and "
<< c2_last_chunks.size() << " Selene last chunks");
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_last_chunks.size() + c2_last_chunks.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_chunks.size(), "unexpected c2 layer");
const CurveTreesV1::LastChunkData<Selene> &last_chunk = c2_last_chunks[c2_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::tower_cycle::selene::SELENE.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::tower_cycle::selene::SELENE.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_chunks.size(), "unexpected c1 layer");
const CurveTreesV1::LastChunkData<Helios> &last_chunk = c1_last_chunks[c1_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::tower_cycle::helios::HELIOS.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::tower_cycle::helios::HELIOS.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
static void log_tree_extension(const CurveTreesV1::TreeExtension &tree_extension)
{ {
const auto &c1_extensions = tree_extension.c1_layer_extensions; const auto &c1_extensions = tree_extension.c1_layer_extensions;
const auto &c2_extensions = tree_extension.c2_layer_extensions; const auto &c2_extensions = tree_extension.c2_layer_extensions;
@ -76,7 +431,7 @@ static void log_tree_extension(const fcmp::curve_trees::TreeExtension<fcmp::towe
const auto I_x = fcmp::tower_cycle::selene::SELENE.to_string(leaf.I_x); const auto I_x = fcmp::tower_cycle::selene::SELENE.to_string(leaf.I_x);
const auto C_x = fcmp::tower_cycle::selene::SELENE.to_string(leaf.C_x); const auto C_x = fcmp::tower_cycle::selene::SELENE.to_string(leaf.C_x);
MDEBUG("Leaf idx " << ((i*fcmp::curve_trees::LEAF_TUPLE_SIZE) + tree_extension.leaves.start_idx) MDEBUG("Leaf idx " << ((i*CurveTreesV1::LEAF_TUPLE_SIZE) + tree_extension.leaves.start_idx)
<< " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }"); << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
} }
@ -89,7 +444,7 @@ static void log_tree_extension(const fcmp::curve_trees::TreeExtension<fcmp::towe
{ {
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer"); CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer");
const fcmp::curve_trees::LayerExtension<fcmp::tower_cycle::selene::Selene> &c2_layer = c2_extensions[c2_idx]; const CurveTreesV1::LayerExtension<Selene> &c2_layer = c2_extensions[c2_idx];
MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx); MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx);
for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j) for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j)
@ -102,7 +457,7 @@ static void log_tree_extension(const fcmp::curve_trees::TreeExtension<fcmp::towe
{ {
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer"); CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer");
const fcmp::curve_trees::LayerExtension<fcmp::tower_cycle::helios::Helios> &c1_layer = c1_extensions[c1_idx]; const CurveTreesV1::LayerExtension<Helios> &c1_layer = c1_extensions[c1_idx];
MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx); MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx);
for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j) for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j)
@ -115,8 +470,8 @@ static void log_tree_extension(const fcmp::curve_trees::TreeExtension<fcmp::towe
use_c2 = !use_c2; use_c2 = !use_c2;
} }
} }
//----------------------------------------------------------------------------------------------------------------------
static void log_tree(const fcmp::curve_trees::Tree<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene> &tree) static void log_tree(const CurveTreesUnitTest::Tree &tree)
{ {
MDEBUG("Tree has " << tree.leaves.size() << " leaves, " MDEBUG("Tree has " << tree.leaves.size() << " leaves, "
<< tree.c1_layers.size() << " helios layers, " << tree.c2_layers.size() << " selene layers"); << tree.c1_layers.size() << " helios layers, " << tree.c2_layers.size() << " selene layers");
@ -141,7 +496,7 @@ static void log_tree(const fcmp::curve_trees::Tree<fcmp::tower_cycle::helios::He
{ {
CHECK_AND_ASSERT_THROW_MES(c2_idx < tree.c2_layers.size(), "unexpected c2 layer"); CHECK_AND_ASSERT_THROW_MES(c2_idx < tree.c2_layers.size(), "unexpected c2 layer");
const fcmp::curve_trees::Layer<fcmp::tower_cycle::selene::Selene> &c2_layer = tree.c2_layers[c2_idx]; const CurveTreesUnitTest::Layer<Selene> &c2_layer = tree.c2_layers[c2_idx];
MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i); MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c2_layer.size(); ++j) for (std::size_t j = 0; j < c2_layer.size(); ++j)
@ -153,7 +508,7 @@ static void log_tree(const fcmp::curve_trees::Tree<fcmp::tower_cycle::helios::He
{ {
CHECK_AND_ASSERT_THROW_MES(c1_idx < tree.c1_layers.size(), "unexpected c1 layer"); CHECK_AND_ASSERT_THROW_MES(c1_idx < tree.c1_layers.size(), "unexpected c1 layer");
const fcmp::curve_trees::Layer<fcmp::tower_cycle::helios::Helios> &c1_layer = tree.c1_layers[c1_idx]; const CurveTreesUnitTest::Layer<Helios> &c1_layer = tree.c1_layers[c1_idx];
MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i); MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c1_layer.size(); ++j) for (std::size_t j = 0; j < c1_layer.size(); ++j)
@ -165,67 +520,82 @@ static void log_tree(const fcmp::curve_trees::Tree<fcmp::tower_cycle::helios::He
use_c2 = !use_c2; use_c2 = !use_c2;
} }
} }
//----------------------------------------------------------------------------------------------------------------------
static void log_last_chunks(const fcmp::curve_trees::LastChunks<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene> &last_chunks) //----------------------------------------------------------------------------------------------------------------------
// Test helpers
//----------------------------------------------------------------------------------------------------------------------
static const CurveTreesV1::Leaves generate_leaves(const CurveTreesV1 &curve_trees, const std::size_t num_leaves)
{ {
const auto &c1_last_chunks = last_chunks.c1_last_chunks; std::vector<CurveTreesV1::LeafTuple> tuples;
const auto &c2_last_chunks = last_chunks.c2_last_chunks; tuples.reserve(num_leaves);
MDEBUG("Total of " << c1_last_chunks.size() << " Helios last chunks and " for (std::size_t i = 0; i < num_leaves; ++i)
<< c2_last_chunks.size() << " Selene last chunks");
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_last_chunks.size() + c2_last_chunks.size()); ++i)
{ {
if (use_c2) // Generate random output tuple
{ crypto::secret_key o,c;
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_chunks.size(), "unexpected c2 layer"); crypto::public_key O,C;
crypto::generate_keys(O, o, o, false);
crypto::generate_keys(C, c, c, false);
const fcmp::curve_trees::LastChunkData<fcmp::tower_cycle::selene::Selene> &last_chunk = c2_last_chunks[c2_idx]; auto leaf_tuple = curve_trees.output_to_leaf_tuple(O, C);
MDEBUG("child_offset: " << last_chunk.child_offset tuples.emplace_back(std::move(leaf_tuple));
<< " , last_child: " << fcmp::tower_cycle::selene::SELENE.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::tower_cycle::selene::SELENE.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_chunks.size(), "unexpected c1 layer");
const fcmp::curve_trees::LastChunkData<fcmp::tower_cycle::helios::Helios> &last_chunk = c1_last_chunks[c1_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::tower_cycle::helios::HELIOS.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::tower_cycle::helios::HELIOS.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c1_idx;
} }
use_c2 = !use_c2; return CurveTreesV1::Leaves{
} .start_idx = 0,
.tuples = std::move(tuples)
};
} }
//----------------------------------------------------------------------------------------------------------------------
static void grow_tree_test(CurveTreesV1 &curve_trees,
CurveTreesUnitTest &curve_trees_accessor,
const std::size_t num_leaves,
CurveTreesUnitTest::Tree &tree_inout)
{
const auto last_chunks = curve_trees_accessor.get_last_chunks(tree_inout);
log_last_chunks(last_chunks);
const auto tree_extension = curve_trees.get_tree_extension(
last_chunks,
generate_leaves(curve_trees, num_leaves));
log_tree_extension(tree_extension);
curve_trees_accessor.extend_tree(tree_extension, tree_inout);
log_tree(tree_inout);
ASSERT_TRUE(curve_trees_accessor.validate_tree(tree_inout));
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// Test
//----------------------------------------------------------------------------------------------------------------------
TEST(curve_trees, grow_tree) TEST(curve_trees, grow_tree)
{ {
// TODO: test varying widths
const std::size_t HELIOS_CHUNK_WIDTH = 5;
const std::size_t SELENE_CHUNK_WIDTH = 5;
auto curve_trees = CurveTreesV1(
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE,
HELIOS_CHUNK_WIDTH,
SELENE_CHUNK_WIDTH);
CurveTreesUnitTest curve_trees_accesor{curve_trees};
const std::vector<std::size_t> N_LEAVES{ const std::vector<std::size_t> N_LEAVES{
1, 1,
2, 2,
3, 3,
fcmp::tower_cycle::selene::SELENE.WIDTH - 1, SELENE_CHUNK_WIDTH - 1,
fcmp::tower_cycle::selene::SELENE.WIDTH, SELENE_CHUNK_WIDTH,
fcmp::tower_cycle::selene::SELENE.WIDTH + 1, SELENE_CHUNK_WIDTH + 1,
(std::size_t)std::pow(fcmp::tower_cycle::selene::SELENE.WIDTH, 2) - 1, (std::size_t)std::pow(SELENE_CHUNK_WIDTH, 2) - 1,
(std::size_t)std::pow(fcmp::tower_cycle::selene::SELENE.WIDTH, 2), (std::size_t)std::pow(SELENE_CHUNK_WIDTH, 2),
(std::size_t)std::pow(fcmp::tower_cycle::selene::SELENE.WIDTH, 2) + 1, (std::size_t)std::pow(SELENE_CHUNK_WIDTH, 2) + 1,
(std::size_t)std::pow(fcmp::tower_cycle::selene::SELENE.WIDTH, 3), (std::size_t)std::pow(SELENE_CHUNK_WIDTH, 3),
(std::size_t)std::pow(fcmp::tower_cycle::selene::SELENE.WIDTH, 4) (std::size_t)std::pow(SELENE_CHUNK_WIDTH, 4)
}; };
for (const std::size_t init_leaves : N_LEAVES) for (const std::size_t init_leaves : N_LEAVES)
@ -234,74 +604,29 @@ TEST(curve_trees, grow_tree)
{ {
MDEBUG("Adding " << init_leaves << " leaves to tree, then extending by " << ext_leaves << " leaves"); MDEBUG("Adding " << init_leaves << " leaves to tree, then extending by " << ext_leaves << " leaves");
fcmp::curve_trees::Tree<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene> global_tree; CurveTreesUnitTest::Tree global_tree;
// TODO: use a class that's initialized with the curve cycle and don't need to call templated functions with curve instances every time // Initialize global tree with `init_leaves`
// Initially extend global tree by `init_leaves`
{ {
MDEBUG("Adding " << init_leaves << " leaves to tree"); MDEBUG("Adding " << init_leaves << " leaves to tree");
const auto tree_extension = fcmp::curve_trees::get_tree_extension<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>( grow_tree_test(curve_trees,
fcmp::curve_trees::LastChunks<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>{}, curve_trees_accesor,
generate_leaves<fcmp::tower_cycle::selene::Selene>(fcmp::tower_cycle::selene::SELENE, init_leaves), init_leaves,
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE);
log_tree_extension(tree_extension);
fcmp::curve_trees::extend_tree<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>(
tree_extension,
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE,
global_tree); global_tree);
log_tree(global_tree);
const bool validated = fcmp::curve_trees::validate_tree<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>(
global_tree,
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE);
ASSERT_TRUE(validated);
MDEBUG("Successfully added initial " << init_leaves << " leaves to tree"); MDEBUG("Successfully added initial " << init_leaves << " leaves to tree");
} }
// Then extend the global tree again by `ext_leaves` // Then extend the global tree by `ext_leaves`
{ {
MDEBUG("Extending tree by " << ext_leaves << " leaves"); MDEBUG("Extending tree by " << ext_leaves << " leaves");
const auto last_chunks = fcmp::curve_trees::get_last_chunks<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>( grow_tree_test(curve_trees,
fcmp::tower_cycle::helios::HELIOS, curve_trees_accesor,
fcmp::tower_cycle::selene::SELENE, ext_leaves,
global_tree); global_tree);
log_last_chunks(last_chunks);
const auto tree_extension = fcmp::curve_trees::get_tree_extension<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>(
last_chunks,
generate_leaves<fcmp::tower_cycle::selene::Selene>(fcmp::tower_cycle::selene::SELENE, ext_leaves),
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE);
log_tree_extension(tree_extension);
fcmp::curve_trees::extend_tree<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>(
tree_extension,
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE,
global_tree);
log_tree(global_tree);
const bool validated = fcmp::curve_trees::validate_tree<fcmp::tower_cycle::helios::Helios, fcmp::tower_cycle::selene::Selene>(
global_tree,
fcmp::tower_cycle::helios::HELIOS,
fcmp::tower_cycle::selene::SELENE);
ASSERT_TRUE(validated);
MDEBUG("Successfully extended by " << ext_leaves << " leaves"); MDEBUG("Successfully extended by " << ext_leaves << " leaves");
} }
} }

View File

@ -0,0 +1,80 @@
// Copyright (c) 2014, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include "fcmp/curve_trees.h"
#include "fcmp/tower_cycle.h"
#include "misc_log_ex.h"
using Helios = fcmp::tower_cycle::helios::Helios;
using Selene = fcmp::tower_cycle::selene::Selene;
// TODO: make this the instantiation in curve_trees.h/.cpp
using CurveTreesV1 = fcmp::CurveTrees<Helios, Selene>;
class CurveTreesUnitTest
{
public:
CurveTreesUnitTest(CurveTreesV1 &curve_trees): m_curve_trees(curve_trees) {};
//member structs
public:
template<typename C>
using Layer = std::vector<typename C::Point>;
// A complete tree, useful for testing (don't want to keep the whole tree in memory during normal operation)
struct Tree final
{
std::vector<CurveTreesV1::LeafTuple> leaves;
std::vector<Layer<Helios>> c1_layers;
std::vector<Layer<Selene>> c2_layers;
};
//public member functions
public:
// Read the in-memory tree and get data from last chunks from each layer
CurveTreesV1::LastChunks get_last_chunks(const Tree &tree);
// Use the tree extension to extend the in-memory tree
void extend_tree(const CurveTreesV1::TreeExtension &tree_extension, Tree &tree_inout);
// Validate the in-memory tree by re-hashing every layer, starting from root and working down to leaf layer
bool validate_tree(const Tree &tree);
//private member functions
private:
template<typename C_PARENT>
bool validate_layer(const C_PARENT &c_parent,
const Layer<C_PARENT> &parents,
const std::vector<typename C_PARENT::Scalar> &child_scalars,
const std::size_t max_chunk_size);
private:
CurveTreesV1 &m_curve_trees;
};