mirror of
https://github.com/monero-project/monero.git
synced 2024-10-01 11:49:47 -04:00
MLSAG speedup and additional checks
This commit is contained in:
parent
6335509727
commit
3a0451a8be
@ -101,7 +101,10 @@ static rct::key get_exponent(const rct::key &base, size_t idx)
|
|||||||
{
|
{
|
||||||
static const std::string salt("bulletproof");
|
static const std::string salt("bulletproof");
|
||||||
std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx);
|
std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx);
|
||||||
const rct::key e = rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
|
rct::key e;
|
||||||
|
ge_p3 e_p3;
|
||||||
|
rct::hash_to_p3(e_p3, rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
|
||||||
|
ge_p3_tobytes(e.bytes, &e_p3);
|
||||||
CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity");
|
CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity");
|
||||||
return e;
|
return e;
|
||||||
}
|
}
|
||||||
|
@ -621,42 +621,14 @@ namespace rct {
|
|||||||
return rv;
|
return rv;
|
||||||
}
|
}
|
||||||
|
|
||||||
key hashToPointSimple(const key & hh) {
|
// Hash a key to p3 representation
|
||||||
key pointk;
|
void hash_to_p3(ge_p3 &hash8_p3, const key &k) {
|
||||||
ge_p1p1 point2;
|
key hash_key = cn_fast_hash(k);
|
||||||
ge_p2 point;
|
ge_p2 hash_p2;
|
||||||
ge_p3 res;
|
ge_fromfe_frombytes_vartime(&hash_p2, hash_key.bytes);
|
||||||
key h = cn_fast_hash(hh);
|
ge_p1p1 hash8_p1p1;
|
||||||
CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&res, h.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
|
ge_mul8(&hash8_p1p1, &hash_p2);
|
||||||
ge_p3_to_p2(&point, &res);
|
ge_p1p1_to_p3(&hash8_p3, &hash8_p1p1);
|
||||||
ge_mul8(&point2, &point);
|
|
||||||
ge_p1p1_to_p3(&res, &point2);
|
|
||||||
ge_p3_tobytes(pointk.bytes, &res);
|
|
||||||
return pointk;
|
|
||||||
}
|
|
||||||
|
|
||||||
key hashToPoint(const key & hh) {
|
|
||||||
key pointk;
|
|
||||||
ge_p2 point;
|
|
||||||
ge_p1p1 point2;
|
|
||||||
ge_p3 res;
|
|
||||||
key h = cn_fast_hash(hh);
|
|
||||||
ge_fromfe_frombytes_vartime(&point, h.bytes);
|
|
||||||
ge_mul8(&point2, &point);
|
|
||||||
ge_p1p1_to_p3(&res, &point2);
|
|
||||||
ge_p3_tobytes(pointk.bytes, &res);
|
|
||||||
return pointk;
|
|
||||||
}
|
|
||||||
|
|
||||||
void hashToPoint(key & pointk, const key & hh) {
|
|
||||||
ge_p2 point;
|
|
||||||
ge_p1p1 point2;
|
|
||||||
ge_p3 res;
|
|
||||||
key h = cn_fast_hash(hh);
|
|
||||||
ge_fromfe_frombytes_vartime(&point, h.bytes);
|
|
||||||
ge_mul8(&point2, &point);
|
|
||||||
ge_p1p1_to_p3(&res, &point2);
|
|
||||||
ge_p3_tobytes(pointk.bytes, &res);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//sums a vector of curve points (for scalars use sc_add)
|
//sums a vector of curve points (for scalars use sc_add)
|
||||||
|
@ -172,10 +172,7 @@ namespace rct {
|
|||||||
key cn_fast_hash(const key64 keys);
|
key cn_fast_hash(const key64 keys);
|
||||||
key hash_to_scalar(const key64 keys);
|
key hash_to_scalar(const key64 keys);
|
||||||
|
|
||||||
//returns hashToPoint as described in https://github.com/ShenNoether/ge_fromfe_writeup
|
void hash_to_p3(ge_p3 &hash8_p3, const key &k);
|
||||||
key hashToPointSimple(const key &in);
|
|
||||||
key hashToPoint(const key &in);
|
|
||||||
void hashToPoint(key &out, const key &in);
|
|
||||||
|
|
||||||
//sums a vector of curve points (for scalars use sc_add)
|
//sums a vector of curve points (for scalars use sc_add)
|
||||||
void sumKeys(key & Csum, const key &Cis);
|
void sumKeys(key & Csum, const key &Cis);
|
||||||
|
@ -163,14 +163,11 @@ namespace rct {
|
|||||||
return verifyBorromean(bb, P1_p3, P2_p3);
|
return verifyBorromean(bb, P1_p3, P2_p3);
|
||||||
}
|
}
|
||||||
|
|
||||||
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
// MLSAG signatures
|
||||||
//This is a just slghtly more efficient version than the ones described below
|
// See paper by Noether (https://eprint.iacr.org/2015/1098)
|
||||||
//(will be explained in more detail in Ring Multisig paper
|
// This generalization allows for some dimensions not to require linkability;
|
||||||
//These are aka MG signatutes in earlier drafts of the ring ct paper
|
// this is used in practice for commitment data within signatures
|
||||||
// c.f. https://eprint.iacr.org/2015/1098 section 2.
|
// Note that using more than one linkable dimension is not recommended.
|
||||||
// Gen creates a signature which proves that for some column in the keymatrix "pk"
|
|
||||||
// the signer knows a secret key for each row in that column
|
|
||||||
// Ver verifies that the MG sig was created correctly
|
|
||||||
mgSig MLSAG_Gen(const key &message, const keyM & pk, const keyV & xx, const multisig_kLRki *kLRki, key *mscout, const unsigned int index, size_t dsRows, hw::device &hwdev) {
|
mgSig MLSAG_Gen(const key &message, const keyM & pk, const keyV & xx, const multisig_kLRki *kLRki, key *mscout, const unsigned int index, size_t dsRows, hw::device &hwdev) {
|
||||||
mgSig rv;
|
mgSig rv;
|
||||||
size_t cols = pk.size();
|
size_t cols = pk.size();
|
||||||
@ -188,6 +185,7 @@ namespace rct {
|
|||||||
|
|
||||||
size_t i = 0, j = 0, ii = 0;
|
size_t i = 0, j = 0, ii = 0;
|
||||||
key c, c_old, L, R, Hi;
|
key c, c_old, L, R, Hi;
|
||||||
|
ge_p3 Hi_p3;
|
||||||
sc_0(c_old.bytes);
|
sc_0(c_old.bytes);
|
||||||
vector<geDsmp> Ip(dsRows);
|
vector<geDsmp> Ip(dsRows);
|
||||||
rv.II = keyV(dsRows);
|
rv.II = keyV(dsRows);
|
||||||
@ -208,7 +206,8 @@ namespace rct {
|
|||||||
rv.II[i] = kLRki->ki;
|
rv.II[i] = kLRki->ki;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
Hi = hashToPoint(pk[index][i]);
|
hash_to_p3(Hi_p3, pk[index][i]);
|
||||||
|
ge_p3_tobytes(Hi.bytes, &Hi_p3);
|
||||||
hwdev.mlsag_prepare(Hi, xx[i], alpha[i] , aG[i] , aHP[i] , rv.II[i]);
|
hwdev.mlsag_prepare(Hi, xx[i], alpha[i] , aG[i] , aHP[i] , rv.II[i]);
|
||||||
toHash[3 * i + 2] = aG[i];
|
toHash[3 * i + 2] = aG[i];
|
||||||
toHash[3 * i + 3] = aHP[i];
|
toHash[3 * i + 3] = aHP[i];
|
||||||
@ -235,7 +234,8 @@ namespace rct {
|
|||||||
sc_0(c.bytes);
|
sc_0(c.bytes);
|
||||||
for (j = 0; j < dsRows; j++) {
|
for (j = 0; j < dsRows; j++) {
|
||||||
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
||||||
hashToPoint(Hi, pk[i][j]);
|
hash_to_p3(Hi_p3, pk[i][j]);
|
||||||
|
ge_p3_tobytes(Hi.bytes, &Hi_p3);
|
||||||
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
|
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
|
||||||
toHash[3 * j + 1] = pk[i][j];
|
toHash[3 * j + 1] = pk[i][j];
|
||||||
toHash[3 * j + 2] = L;
|
toHash[3 * j + 2] = L;
|
||||||
@ -260,43 +260,42 @@ namespace rct {
|
|||||||
return rv;
|
return rv;
|
||||||
}
|
}
|
||||||
|
|
||||||
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
// MLSAG signatures
|
||||||
//This is a just slghtly more efficient version than the ones described below
|
// See paper by Noether (https://eprint.iacr.org/2015/1098)
|
||||||
//(will be explained in more detail in Ring Multisig paper
|
// This generalization allows for some dimensions not to require linkability;
|
||||||
//These are aka MG signatutes in earlier drafts of the ring ct paper
|
// this is used in practice for commitment data within signatures
|
||||||
// c.f. https://eprint.iacr.org/2015/1098 section 2.
|
// Note that using more than one linkable dimension is not recommended.
|
||||||
// Gen creates a signature which proves that for some column in the keymatrix "pk"
|
|
||||||
// the signer knows a secret key for each row in that column
|
|
||||||
// Ver verifies that the MG sig was created correctly
|
|
||||||
bool MLSAG_Ver(const key &message, const keyM & pk, const mgSig & rv, size_t dsRows) {
|
bool MLSAG_Ver(const key &message, const keyM & pk, const mgSig & rv, size_t dsRows) {
|
||||||
|
|
||||||
size_t cols = pk.size();
|
size_t cols = pk.size();
|
||||||
CHECK_AND_ASSERT_MES(cols >= 2, false, "Error! What is c if cols = 1!");
|
CHECK_AND_ASSERT_MES(cols >= 2, false, "Signature must contain more than one public key");
|
||||||
size_t rows = pk[0].size();
|
size_t rows = pk[0].size();
|
||||||
CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pk");
|
CHECK_AND_ASSERT_MES(rows >= 1, false, "Bad total row number");
|
||||||
for (size_t i = 1; i < cols; ++i) {
|
for (size_t i = 1; i < cols; ++i) {
|
||||||
CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "pk is not rectangular");
|
CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "Bad public key matrix dimensions");
|
||||||
}
|
}
|
||||||
CHECK_AND_ASSERT_MES(rv.II.size() == dsRows, false, "Bad II size");
|
CHECK_AND_ASSERT_MES(rv.II.size() == dsRows, false, "Wrong number of key images present");
|
||||||
CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad rv.ss size");
|
CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad scalar matrix dimensions");
|
||||||
for (size_t i = 0; i < cols; ++i) {
|
for (size_t i = 0; i < cols; ++i) {
|
||||||
CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "rv.ss is not rectangular");
|
CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "Bad scalar matrix dimensions");
|
||||||
}
|
}
|
||||||
CHECK_AND_ASSERT_MES(dsRows <= rows, false, "Bad dsRows value");
|
CHECK_AND_ASSERT_MES(dsRows <= rows, false, "Non-double-spend rows cannot exceed total rows");
|
||||||
|
|
||||||
for (size_t i = 0; i < rv.ss.size(); ++i)
|
for (size_t i = 0; i < rv.ss.size(); ++i) {
|
||||||
for (size_t j = 0; j < rv.ss[i].size(); ++j)
|
for (size_t j = 0; j < rv.ss[i].size(); ++j) {
|
||||||
CHECK_AND_ASSERT_MES(sc_check(rv.ss[i][j].bytes) == 0, false, "Bad ss slot");
|
CHECK_AND_ASSERT_MES(sc_check(rv.ss[i][j].bytes) == 0, false, "Bad signature scalar");
|
||||||
CHECK_AND_ASSERT_MES(sc_check(rv.cc.bytes) == 0, false, "Bad cc");
|
}
|
||||||
|
}
|
||||||
|
CHECK_AND_ASSERT_MES(sc_check(rv.cc.bytes) == 0, false, "Bad initial signature hash");
|
||||||
|
|
||||||
size_t i = 0, j = 0, ii = 0;
|
size_t i = 0, j = 0, ii = 0;
|
||||||
key c, L, R, Hi;
|
key c, L, R;
|
||||||
key c_old = copy(rv.cc);
|
key c_old = copy(rv.cc);
|
||||||
vector<geDsmp> Ip(dsRows);
|
vector<geDsmp> Ip(dsRows);
|
||||||
for (i = 0 ; i < dsRows ; i++) {
|
for (i = 0 ; i < dsRows ; i++) {
|
||||||
|
CHECK_AND_ASSERT_MES(!(rv.II[i] == rct::identity()), false, "Bad key image");
|
||||||
precomp(Ip[i].k, rv.II[i]);
|
precomp(Ip[i].k, rv.II[i]);
|
||||||
}
|
}
|
||||||
size_t ndsRows = 3 * dsRows; //non Double Spendable Rows (see identity chains paper
|
size_t ndsRows = 3 * dsRows; // number of dimensions not requiring linkability
|
||||||
keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
|
keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
|
||||||
toHash[0] = message;
|
toHash[0] = message;
|
||||||
i = 0;
|
i = 0;
|
||||||
@ -304,9 +303,14 @@ namespace rct {
|
|||||||
sc_0(c.bytes);
|
sc_0(c.bytes);
|
||||||
for (j = 0; j < dsRows; j++) {
|
for (j = 0; j < dsRows; j++) {
|
||||||
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
||||||
hashToPoint(Hi, pk[i][j]);
|
|
||||||
CHECK_AND_ASSERT_MES(!(Hi == rct::identity()), false, "Data hashed to point at infinity");
|
// Compute R directly
|
||||||
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
|
ge_p3 hash8_p3;
|
||||||
|
hash_to_p3(hash8_p3, pk[i][j]);
|
||||||
|
ge_p2 R_p2;
|
||||||
|
ge_double_scalarmult_precomp_vartime(&R_p2, rv.ss[i][j].bytes, &hash8_p3, c_old.bytes, Ip[j].k);
|
||||||
|
ge_tobytes(R.bytes, &R_p2);
|
||||||
|
|
||||||
toHash[3 * j + 1] = pk[i][j];
|
toHash[3 * j + 1] = pk[i][j];
|
||||||
toHash[3 * j + 2] = L;
|
toHash[3 * j + 2] = L;
|
||||||
toHash[3 * j + 3] = R;
|
toHash[3 * j + 3] = R;
|
||||||
@ -317,6 +321,7 @@ namespace rct {
|
|||||||
toHash[ndsRows + 2 * ii + 2] = L;
|
toHash[ndsRows + 2 * ii + 2] = L;
|
||||||
}
|
}
|
||||||
c = hash_to_scalar(toHash);
|
c = hash_to_scalar(toHash);
|
||||||
|
CHECK_AND_ASSERT_MES(!(c == rct::zero()), false, "Bad signature hash");
|
||||||
copy(c_old, c);
|
copy(c_old, c);
|
||||||
i = (i + 1);
|
i = (i + 1);
|
||||||
}
|
}
|
||||||
|
@ -57,7 +57,6 @@
|
|||||||
#include "rct_mlsag.h"
|
#include "rct_mlsag.h"
|
||||||
#include "equality.h"
|
#include "equality.h"
|
||||||
#include "range_proof.h"
|
#include "range_proof.h"
|
||||||
#include "rct_mlsag.h"
|
|
||||||
#include "bulletproof.h"
|
#include "bulletproof.h"
|
||||||
#include "crypto_ops.h"
|
#include "crypto_ops.h"
|
||||||
#include "multiexp.h"
|
#include "multiexp.h"
|
||||||
@ -214,14 +213,8 @@ int main(int argc, char** argv)
|
|||||||
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 32);
|
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 32);
|
||||||
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 16384);
|
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 16384);
|
||||||
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, false);
|
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, false);
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, false);
|
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, true);
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, false);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, false);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, true);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, true);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, true);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, true);
|
|
||||||
|
|
||||||
TEST_PERFORMANCE2(filter, p, test_equality, memcmp32, true);
|
TEST_PERFORMANCE2(filter, p, test_equality, memcmp32, true);
|
||||||
TEST_PERFORMANCE2(filter, p, test_equality, memcmp32, false);
|
TEST_PERFORMANCE2(filter, p, test_equality, memcmp32, false);
|
||||||
@ -251,15 +244,6 @@ int main(int argc, char** argv)
|
|||||||
TEST_PERFORMANCE6(filter, p, test_aggregated_bulletproof, false, 2, 1, 1, 0, 64);
|
TEST_PERFORMANCE6(filter, p, test_aggregated_bulletproof, false, 2, 1, 1, 0, 64);
|
||||||
TEST_PERFORMANCE6(filter, p, test_aggregated_bulletproof, true, 2, 1, 1, 0, 64); // 64 proof, each with 2 amounts
|
TEST_PERFORMANCE6(filter, p, test_aggregated_bulletproof, true, 2, 1, 1, 0, 64); // 64 proof, each with 2 amounts
|
||||||
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, false);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, false);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, false);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, false);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, true);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, true);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, true);
|
|
||||||
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, true);
|
|
||||||
|
|
||||||
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_add);
|
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_add);
|
||||||
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_sub);
|
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_sub);
|
||||||
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_mul);
|
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_mul);
|
||||||
|
@ -35,13 +35,13 @@
|
|||||||
|
|
||||||
#include "single_tx_test_base.h"
|
#include "single_tx_test_base.h"
|
||||||
|
|
||||||
template<size_t inputs, size_t ring_size, bool ver>
|
template<size_t ring_size, bool ver>
|
||||||
class test_ringct_mlsag : public single_tx_test_base
|
class test_ringct_mlsag : public single_tx_test_base
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
static const size_t cols = ring_size;
|
static const size_t cols = ring_size;
|
||||||
static const size_t rows = inputs;
|
static const size_t rows = 2; // single spend and commitment data
|
||||||
static const size_t loop_count = 100;
|
static const size_t loop_count = 1000;
|
||||||
|
|
||||||
bool init()
|
bool init()
|
||||||
{
|
{
|
||||||
@ -65,7 +65,7 @@ public:
|
|||||||
{
|
{
|
||||||
sk[j] = xm[ind][j];
|
sk[j] = xm[ind][j];
|
||||||
}
|
}
|
||||||
IIccss = MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows, hw::get_device("default"));
|
IIccss = MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows-1, hw::get_device("default"));
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -73,9 +73,9 @@ public:
|
|||||||
bool test()
|
bool test()
|
||||||
{
|
{
|
||||||
if (ver)
|
if (ver)
|
||||||
MLSAG_Ver(rct::identity(), P, IIccss, rows);
|
MLSAG_Ver(rct::identity(), P, IIccss, rows-1);
|
||||||
else
|
else
|
||||||
MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows, hw::get_device("default"));
|
MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows-1, hw::get_device("default"));
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -788,7 +788,20 @@ TEST(ringct, HPow2)
|
|||||||
{
|
{
|
||||||
key G = scalarmultBase(d2h(1));
|
key G = scalarmultBase(d2h(1));
|
||||||
|
|
||||||
key H = hashToPointSimple(G);
|
// Note that H is computed differently than standard hashing
|
||||||
|
// This method is not guaranteed to return a curvepoint for all inputs
|
||||||
|
// Don't use it elsewhere
|
||||||
|
key H = cn_fast_hash(G);
|
||||||
|
ge_p3 H_p3;
|
||||||
|
int decode = ge_frombytes_vartime(&H_p3, H.bytes);
|
||||||
|
ASSERT_EQ(decode, 0); // this is known to pass for the particular value G
|
||||||
|
ge_p2 H_p2;
|
||||||
|
ge_p3_to_p2(&H_p2, &H_p3);
|
||||||
|
ge_p1p1 H8_p1p1;
|
||||||
|
ge_mul8(&H8_p1p1, &H_p2);
|
||||||
|
ge_p1p1_to_p3(&H_p3, &H8_p1p1);
|
||||||
|
ge_p3_tobytes(H.bytes, &H_p3);
|
||||||
|
|
||||||
for (int j = 0 ; j < ATOMS ; j++) {
|
for (int j = 0 ; j < ATOMS ; j++) {
|
||||||
ASSERT_TRUE(equalKeys(H, H2[j]));
|
ASSERT_TRUE(equalKeys(H, H2[j]));
|
||||||
addKeys(H, H, H);
|
addKeys(H, H, H);
|
||||||
|
Loading…
Reference in New Issue
Block a user