mirror of
https://github.com/monero-project/monero.git
synced 2025-05-02 16:34:55 -04:00
wallet2: "output lineup" fake out selection
Based on python code by sarang: https://github.com/SarangNoether/skunkworks/blob/outputs/outputs/simulate.py
This commit is contained in:
parent
7973fb6a69
commit
35e0a968bd
3 changed files with 189 additions and 60 deletions
|
@ -101,3 +101,120 @@ TEST(select_outputs, order)
|
|||
PICK(1); // then the one that's on the same height
|
||||
}
|
||||
|
||||
#define MKOFFSETS(N, n) \
|
||||
offsets.resize(N); \
|
||||
size_t n_outs = 0; \
|
||||
for (auto &offset: offsets) \
|
||||
{ \
|
||||
offset = n_outs += (n); \
|
||||
}
|
||||
|
||||
TEST(select_outputs, gamma)
|
||||
{
|
||||
std::vector<uint64_t> offsets;
|
||||
|
||||
MKOFFSETS(300000, 1);
|
||||
tools::gamma_picker picker(offsets);
|
||||
std::vector<double> ages(100000);
|
||||
double age_scale = 120. * (offsets.size() / (double)n_outs);
|
||||
for (size_t i = 0; i < ages.size(); )
|
||||
{
|
||||
uint64_t o = picker.pick();
|
||||
if (o >= n_outs)
|
||||
continue;
|
||||
ages[i] = (n_outs - 1 - o) * age_scale;
|
||||
ASSERT_GE(ages[i], 0);
|
||||
ASSERT_LE(ages[i], offsets.size() * 120);
|
||||
++i;
|
||||
}
|
||||
double median = epee::misc_utils::median(ages);
|
||||
MDEBUG("median age: " << median / 86400. << " days");
|
||||
ASSERT_GE(median, 1.3 * 86400);
|
||||
ASSERT_LE(median, 1.4 * 86400);
|
||||
}
|
||||
|
||||
TEST(select_outputs, density)
|
||||
{
|
||||
static const size_t NPICKS = 1000000;
|
||||
std::vector<uint64_t> offsets;
|
||||
|
||||
MKOFFSETS(300000, 1 + (rand() & 0x1f));
|
||||
tools::gamma_picker picker(offsets);
|
||||
|
||||
std::vector<int> picks(/*n_outs*/offsets.size(), 0);
|
||||
for (int i = 0; i < NPICKS; )
|
||||
{
|
||||
uint64_t o = picker.pick();
|
||||
if (o >= n_outs)
|
||||
continue;
|
||||
auto it = std::lower_bound(offsets.begin(), offsets.end(), o);
|
||||
auto idx = std::distance(offsets.begin(), it);
|
||||
ASSERT_LT(idx, picks.size());
|
||||
++picks[idx];
|
||||
++i;
|
||||
}
|
||||
|
||||
for (int d = 1; d < 0x20; ++d)
|
||||
{
|
||||
// count the number of times an output in a block of d outputs was selected
|
||||
// count how many outputs are in a block of d outputs
|
||||
size_t count_selected = 0, count_chain = 0;
|
||||
for (size_t i = 0; i < offsets.size(); ++i)
|
||||
{
|
||||
size_t n_outputs = offsets[i] - (i == 0 ? 0 : offsets[i - 1]);
|
||||
if (n_outputs == d)
|
||||
{
|
||||
count_selected += picks[i];
|
||||
count_chain += d;
|
||||
}
|
||||
}
|
||||
float selected_ratio = count_selected / (float)NPICKS;
|
||||
float chain_ratio = count_chain / (float)n_outs;
|
||||
MDEBUG(count_selected << "/" << NPICKS << " outputs selected in blocks of density " << d << ", " << 100.0f * selected_ratio << "%");
|
||||
MDEBUG(count_chain << "/" << offsets.size() << " outputs in blocks of density " << d << ", " << 100.0f * chain_ratio << "%");
|
||||
ASSERT_LT(fabsf(selected_ratio - chain_ratio), 0.02f);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(select_outputs, same_distribution)
|
||||
{
|
||||
static const size_t NPICKS = 1000000;
|
||||
std::vector<uint64_t> offsets;
|
||||
|
||||
MKOFFSETS(300000, 1 + (rand() & 0x1f));
|
||||
tools::gamma_picker picker(offsets);
|
||||
|
||||
std::vector<int> chain_picks(offsets.size(), 0);
|
||||
std::vector<int> output_picks(n_outs, 0);
|
||||
for (int i = 0; i < NPICKS; )
|
||||
{
|
||||
uint64_t o = picker.pick();
|
||||
if (o >= n_outs)
|
||||
continue;
|
||||
auto it = std::lower_bound(offsets.begin(), offsets.end(), o);
|
||||
auto idx = std::distance(offsets.begin(), it);
|
||||
ASSERT_LT(idx, chain_picks.size());
|
||||
++chain_picks[idx];
|
||||
++output_picks[o];
|
||||
++i;
|
||||
}
|
||||
|
||||
// scale them both to 0-100
|
||||
std::vector<int> chain_norm(100, 0), output_norm(100, 0);
|
||||
for (size_t i = 0; i < output_picks.size(); ++i)
|
||||
output_norm[i * 100 / output_picks.size()] += output_picks[i];
|
||||
for (size_t i = 0; i < chain_picks.size(); ++i)
|
||||
chain_norm[i * 100 / chain_picks.size()] += chain_picks[i];
|
||||
|
||||
double max_dev = 0.0, avg_dev = 0.0;
|
||||
for (size_t i = 0; i < 100; ++i)
|
||||
{
|
||||
const double diff = (double)output_norm[i] - (double)chain_norm[i];
|
||||
double dev = fabs(2.0 * diff / (output_norm[i] + chain_norm[i]));
|
||||
ASSERT_LT(dev, 0.1);
|
||||
avg_dev += dev;
|
||||
}
|
||||
avg_dev /= 100;
|
||||
MDEBUG("avg_dev: " << avg_dev);
|
||||
ASSERT_LT(avg_dev, 0.015);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue