monero/src/blockchain_db/blockchain_db.h

1525 lines
49 KiB
C
Raw Normal View History

2018-01-07 00:05:16 -05:00
// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef BLOCKCHAIN_DB_H
#define BLOCKCHAIN_DB_H
#pragma once
#include <list>
#include <string>
#include <exception>
#include <boost/program_options.hpp>
#include "common/command_line.h"
#include "crypto/hash.h"
#include "cryptonote_basic/blobdatatype.h"
#include "cryptonote_basic/cryptonote_basic.h"
#include "cryptonote_basic/difficulty.h"
#include "cryptonote_basic/hardfork.h"
/** \file
* Cryptonote Blockchain Database Interface
*
* The DB interface is a store for the canonical block chain.
* It serves as a persistent storage for the blockchain.
*
* For the sake of efficiency, a concrete implementation may also
* store some blockchain data outside of the blocks, such as spent
* transfer key images, unspent transaction outputs, etc.
*
* Examples are as follows:
*
* Transactions are duplicated so that we don't have to fetch a whole block
* in order to fetch a transaction from that block.
*
* Spent key images are duplicated outside of the blocks so it is quick
* to verify an output hasn't already been spent
*
* Unspent transaction outputs are duplicated to quickly gather random
* outputs to use for mixins
*
* Indices and Identifiers:
* The word "index" is used ambiguously throughout this code. It is
* particularly confusing when talking about the output or transaction
* tables since their indexing can refer to themselves or each other.
* I have attempted to clarify these usages here:
*
* Blocks, transactions, and outputs are all identified by a hash.
* For storage efficiency, a 64-bit integer ID is used instead of the hash
* inside the DB. Tables exist to map between hash and ID. A block ID is
* also referred to as its "height". Transactions and outputs generally are
* not referred to by ID outside of this module, but the tx ID is returned
* by tx_exists() and used by get_tx_amount_output_indices(). Like their
* corresponding hashes, IDs are globally unique.
*
* The remaining uses of the word "index" refer to local offsets, and are
* not globally unique. An "amount output index" N refers to the Nth output
* of a specific amount. An "output local index" N refers to the Nth output
* of a specific tx.
*
* Exceptions:
* DB_ERROR -- generic
* DB_OPEN_FAILURE
* DB_CREATE_FAILURE
* DB_SYNC_FAILURE
* BLOCK_DNE
* BLOCK_PARENT_DNE
* BLOCK_EXISTS
* BLOCK_INVALID -- considering making this multiple errors
* TX_DNE
* TX_EXISTS
* OUTPUT_DNE
* OUTPUT_EXISTS
* KEY_IMAGE_EXISTS
*/
namespace cryptonote
{
/** a pair of <transaction hash, output index>, typedef for convenience */
2014-10-06 19:54:46 -04:00
typedef std::pair<crypto::hash, uint64_t> tx_out_index;
extern const command_line::arg_descriptor<std::string> arg_db_type;
extern const command_line::arg_descriptor<std::string> arg_db_sync_mode;
extern const command_line::arg_descriptor<bool, false> arg_db_salvage;
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
#pragma pack(push, 1)
/**
* @brief a struct containing output metadata
*/
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
struct output_data_t
{
crypto::public_key pubkey; //!< the output's public key (for spend verification)
uint64_t unlock_time; //!< the output's unlock time (or height)
uint64_t height; //!< the height of the block which created the output
rct::key commitment; //!< the output's amount commitment (for spend verification)
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
};
#pragma pack(pop)
#pragma pack(push, 1)
struct tx_data_t
{
uint64_t tx_id;
uint64_t unlock_time;
uint64_t block_id;
};
#pragma pack(pop)
/**
* @brief a struct containing txpool per transaction metadata
*/
struct txpool_tx_meta_t
{
crypto::hash max_used_block_id;
crypto::hash last_failed_id;
uint64_t blob_size;
uint64_t fee;
uint64_t max_used_block_height;
uint64_t last_failed_height;
uint64_t receive_time;
uint64_t last_relayed_time;
// 112 bytes
uint8_t kept_by_block;
uint8_t relayed;
uint8_t do_not_relay;
uint8_t double_spend_seen: 1;
uint8_t padding[76]; // till 192 bytes
};
#define DBF_SAFE 1
#define DBF_FAST 2
#define DBF_FASTEST 4
#define DBF_RDONLY 8
#define DBF_SALVAGE 0x10
/***********************************
* Exception Definitions
***********************************/
/**
* @brief A base class for BlockchainDB exceptions
*/
class DB_EXCEPTION : public std::exception
{
private:
std::string m;
protected:
DB_EXCEPTION(const char *s) : m(s) { }
public:
virtual ~DB_EXCEPTION() { }
const char* what() const throw()
{
return m.c_str();
}
};
/**
* @brief A generic BlockchainDB exception
*/
class DB_ERROR : public DB_EXCEPTION
{
public:
DB_ERROR() : DB_EXCEPTION("Generic DB Error") { }
DB_ERROR(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when there is an error starting a DB transaction
*/
class DB_ERROR_TXN_START : public DB_EXCEPTION
{
public:
DB_ERROR_TXN_START() : DB_EXCEPTION("DB Error in starting txn") { }
DB_ERROR_TXN_START(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when opening the BlockchainDB fails
*/
class DB_OPEN_FAILURE : public DB_EXCEPTION
{
public:
DB_OPEN_FAILURE() : DB_EXCEPTION("Failed to open the db") { }
DB_OPEN_FAILURE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when creating the BlockchainDB fails
*/
class DB_CREATE_FAILURE : public DB_EXCEPTION
{
public:
DB_CREATE_FAILURE() : DB_EXCEPTION("Failed to create the db") { }
DB_CREATE_FAILURE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when synchronizing the BlockchainDB to disk fails
*/
class DB_SYNC_FAILURE : public DB_EXCEPTION
{
public:
DB_SYNC_FAILURE() : DB_EXCEPTION("Failed to sync the db") { }
DB_SYNC_FAILURE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a requested block does not exist
*/
class BLOCK_DNE : public DB_EXCEPTION
{
public:
BLOCK_DNE() : DB_EXCEPTION("The block requested does not exist") { }
BLOCK_DNE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a block's parent does not exist (and it needed to)
*/
class BLOCK_PARENT_DNE : public DB_EXCEPTION
{
public:
BLOCK_PARENT_DNE() : DB_EXCEPTION("The parent of the block does not exist") { }
BLOCK_PARENT_DNE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a block exists, but shouldn't, namely when adding a block
*/
class BLOCK_EXISTS : public DB_EXCEPTION
{
public:
BLOCK_EXISTS() : DB_EXCEPTION("The block to be added already exists!") { }
BLOCK_EXISTS(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when something is wrong with the block to be added
*/
class BLOCK_INVALID : public DB_EXCEPTION
{
public:
BLOCK_INVALID() : DB_EXCEPTION("The block to be added did not pass validation!") { }
BLOCK_INVALID(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a requested transaction does not exist
*/
class TX_DNE : public DB_EXCEPTION
{
public:
TX_DNE() : DB_EXCEPTION("The transaction requested does not exist") { }
TX_DNE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a transaction exists, but shouldn't, namely when adding a block
*/
class TX_EXISTS : public DB_EXCEPTION
{
public:
TX_EXISTS() : DB_EXCEPTION("The transaction to be added already exists!") { }
TX_EXISTS(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a requested output does not exist
*/
class OUTPUT_DNE : public DB_EXCEPTION
{
public:
OUTPUT_DNE() : DB_EXCEPTION("The output requested does not exist!") { }
OUTPUT_DNE(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when an output exists, but shouldn't, namely when adding a block
*/
class OUTPUT_EXISTS : public DB_EXCEPTION
{
public:
OUTPUT_EXISTS() : DB_EXCEPTION("The output to be added already exists!") { }
OUTPUT_EXISTS(const char* s) : DB_EXCEPTION(s) { }
};
/**
* @brief thrown when a spent key image exists, but shouldn't, namely when adding a block
*/
class KEY_IMAGE_EXISTS : public DB_EXCEPTION
{
public:
KEY_IMAGE_EXISTS() : DB_EXCEPTION("The spent key image to be added already exists!") { }
KEY_IMAGE_EXISTS(const char* s) : DB_EXCEPTION(s) { }
};
/***********************************
* End of Exception Definitions
***********************************/
/**
* @brief The BlockchainDB backing store interface declaration/contract
*
* This class provides a uniform interface for using BlockchainDB to store
* a blockchain. Any implementation of this class will also implement all
* functions exposed here, so one can use this class without knowing what
* implementation is being used. Refer to each pure virtual function's
* documentation here when implementing a BlockchainDB subclass.
*
* A subclass which encounters an issue should report that issue by throwing
* a DB_EXCEPTION which adequately conveys the issue.
*/
class BlockchainDB
{
private:
/*********************************************************************
* private virtual members
*********************************************************************/
/**
* @brief add the block and metadata to the db
*
* The subclass implementing this will add the specified block and
* block metadata to its backing store. This does not include its
* transactions, those are added in a separate step.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param blk the block to be added
* @param block_size the size of the block (transactions and all)
* @param cumulative_difficulty the accumulated difficulty after this block
* @param coins_generated the number of coins generated total after this block
* @param blk_hash the hash of the block
*/
virtual void add_block( const block& blk
, const size_t& block_size
, const difficulty_type& cumulative_difficulty
, const uint64_t& coins_generated
, const crypto::hash& blk_hash
) = 0;
/**
* @brief remove data about the top block
*
* The subclass implementing this will remove the block data from the top
* block in the chain. The data to be removed is that which was added in
* BlockchainDB::add_block(const block& blk, const size_t& block_size, const difficulty_type& cumulative_difficulty, const uint64_t& coins_generated, const crypto::hash& blk_hash)
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*/
virtual void remove_block() = 0;
/**
* @brief store the transaction and its metadata
*
* The subclass implementing this will add the specified transaction data
* to its backing store. This includes only the transaction blob itself
* and the other data passed here, not the separate outputs of the
* transaction.
*
2016-04-05 16:13:16 -04:00
* It returns a tx ID, which is a mapping from the tx_hash. The tx ID
* is used in #add_tx_amount_output_indices().
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param blk_hash the hash of the block containing the transaction
* @param tx the transaction to be added
* @param tx_hash the hash of the transaction
2016-04-05 16:13:16 -04:00
* @return the transaction ID
*/
virtual uint64_t add_transaction_data(const crypto::hash& blk_hash, const transaction& tx, const crypto::hash& tx_hash) = 0;
/**
* @brief remove data about a transaction
*
* The subclass implementing this will remove the transaction data
* for the passed transaction. The data to be removed was added in
* add_transaction_data(). Additionally, current subclasses have behavior
* which requires the transaction itself as a parameter here. Future
* implementations should note that this parameter is subject to be removed
* at a later time.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param tx_hash the hash of the transaction to be removed
* @param tx the transaction
*/
virtual void remove_transaction_data(const crypto::hash& tx_hash, const transaction& tx) = 0;
/**
* @brief store an output
*
* The subclass implementing this will add the output data passed to its
* backing store in a suitable manner. In addition, the subclass is responsible
* for keeping track of the global output count in some manner, so that
* outputs may be indexed by the order in which they were created. In the
* future, this tracking (of the number, at least) should be moved to
* this class, as it is necessary and the same among all BlockchainDB.
*
2016-04-05 16:13:16 -04:00
* It returns an amount output index, which is the index of the output
* for its specified amount.
*
* This data should be stored in such a manner that the only thing needed to
* reverse the process is the tx_out.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param tx_hash hash of the transaction the output was created by
* @param tx_output the output
* @param local_index index of the output in its transaction
* @param unlock_time unlock time/height of the output
* @param commitment the rct commitment to the output amount
2016-04-05 16:13:16 -04:00
* @return amount output index
*/
virtual uint64_t add_output(const crypto::hash& tx_hash, const tx_out& tx_output, const uint64_t& local_index, const uint64_t unlock_time, const rct::key *commitment) = 0;
/**
2016-04-05 16:13:16 -04:00
* @brief store amount output indices for a tx's outputs
*
2016-04-05 16:13:16 -04:00
* The subclass implementing this will add the amount output indices to its
* backing store in a suitable manner. The tx_id will be the same one that
* was returned from #add_output().
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
2016-04-05 16:13:16 -04:00
* @param tx_id ID of the transaction containing these outputs
* @param amount_output_indices the amount output indices of the transaction
*/
2016-04-05 16:13:16 -04:00
virtual void add_tx_amount_output_indices(const uint64_t tx_id, const std::vector<uint64_t>& amount_output_indices) = 0;
/**
* @brief store a spent key
*
* The subclass implementing this will store the spent key image.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param k_image the spent key image to store
*/
virtual void add_spent_key(const crypto::key_image& k_image) = 0;
/**
* @brief remove a spent key
*
* The subclass implementing this will remove the key image.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param k_image the spent key image to remove
*/
virtual void remove_spent_key(const crypto::key_image& k_image) = 0;
/*********************************************************************
* private concrete members
*********************************************************************/
/**
* @brief private version of pop_block, for undoing if an add_block fails
*
* This function simply calls pop_block(block& blk, std::vector<transaction>& txs)
* with dummy parameters, as the returns-by-reference can be discarded.
*/
void pop_block();
// helper function to remove transaction from blockchain
/**
* @brief helper function to remove transaction from the blockchain
*
* This function encapsulates aspects of removing a transaction.
*
* @param tx_hash the hash of the transaction to be removed
*/
void remove_transaction(const crypto::hash& tx_hash);
uint64_t num_calls = 0; //!< a performance metric
uint64_t time_blk_hash = 0; //!< a performance metric
uint64_t time_add_block1 = 0; //!< a performance metric
uint64_t time_add_transaction = 0; //!< a performance metric
protected:
/**
* @brief helper function for add_transactions, to add each individual transaction
*
* This function is called by add_transactions() for each transaction to be
* added.
*
* @param blk_hash hash of the block which has the transaction
* @param tx the transaction to add
* @param tx_hash_ptr the hash of the transaction, if already calculated
*/
void add_transaction(const crypto::hash& blk_hash, const transaction& tx, const crypto::hash* tx_hash_ptr = NULL);
mutable uint64_t time_tx_exists = 0; //!< a performance metric
uint64_t time_commit1 = 0; //!< a performance metric
bool m_auto_remove_logs = true; //!< whether or not to automatically remove old logs
HardFork* m_hardfork;
public:
/**
* @brief An empty destructor.
*/
virtual ~BlockchainDB() { };
/**
* @brief init command line options
*/
static void init_options(boost::program_options::options_description& desc);
/**
* @brief reset profiling stats
*/
void reset_stats();
/**
* @brief show profiling stats
*
* This function prints current performance/profiling data to whichever
* log file(s) are set up (possibly including stdout or stderr)
*/
void show_stats();
/**
* @brief open a db, or create it if necessary.
*
* This function opens an existing database or creates it if it
* does not exist.
*
* The subclass implementing this will handle all file opening/creation,
* and is responsible for maintaining its state.
*
* The parameter <filename> may not refer to a file name, necessarily, but
* could be an IP:PORT for a database which needs it, and so on. Calling it
* <filename> is convenient and should be descriptive enough, however.
*
* For now, db_flags are
* specific to the subclass being instantiated. This is subject to change,
* and the db_flags parameter may be deprecated.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param filename a string referring to the BlockchainDB to open
* @param db_flags flags relevant to how to open/use the BlockchainDB
*/
virtual void open(const std::string& filename, const int db_flags = 0) = 0;
/**
* @brief Gets the current open/ready state of the BlockchainDB
*
* @return true if open/ready, otherwise false
*/
2015-05-27 14:03:46 -04:00
bool is_open() const;
/**
* @brief close the BlockchainDB
*
* At minimum, this call ensures that further use of the BlockchainDB
* instance will not have effect. In any case where it is necessary
* to do so, a subclass implementing this will sync with disk.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*/
virtual void close() = 0;
/**
* @brief sync the BlockchainDB with disk
*
* This function should write any changes to whatever permanent backing
* store the subclass uses. Example: a BlockchainDB instance which
* keeps the whole blockchain in RAM won't need to regularly access a
* disk, but should write out its state when this is called.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*/
virtual void sync() = 0;
/**
* @brief toggle safe syncs for the DB
*
* Used to switch DBF_SAFE on or off after starting up with DBF_FAST.
*/
virtual void safesyncmode(const bool onoff) = 0;
/**
* @brief Remove everything from the BlockchainDB
*
* This function should completely remove all data from a BlockchainDB.
*
* Use with caution!
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*/
virtual void reset() = 0;
/**
* @brief get all files used by the BlockchainDB (if any)
*
* This function is largely for ease of automation, namely for unit tests.
*
* The subclass implementation should return all filenames it uses.
*
* @return a list of filenames
*/
virtual std::vector<std::string> get_filenames() const = 0;
// return the name of the folder the db's file(s) should reside in
/**
* @brief gets the name of the folder the BlockchainDB's file(s) should be in
*
* The subclass implementation should return the name of the folder in which
* it stores files, or an empty string if there is none.
*
* @return the name of the folder with the BlockchainDB's files, if any.
*/
virtual std::string get_db_name() const = 0;
// FIXME: these are just for functionality mocking, need to implement
// RAII-friendly and multi-read one-write friendly locking mechanism
//
// acquire db lock
/**
* @brief acquires the BlockchainDB lock
*
* This function is a stub until such a time as locking is implemented at
* this level.
*
* The subclass implementation should return true unless implementing a
* locking scheme of some sort, in which case it should return true upon
* acquisition of the lock and block until then.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @return true, unless at a future time false makes sense (timeout, etc)
*/
virtual bool lock() = 0;
// release db lock
/**
* @brief This function releases the BlockchainDB lock
*
* The subclass, should it have implemented lock(), will release any lock
* held by the calling thread. In the case of recursive locking, it should
* release one instance of a lock.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*/
virtual void unlock() = 0;
/**
* @brief tells the BlockchainDB to start a new "batch" of blocks
*
* If the subclass implements a batching method of caching blocks in RAM to
* be added to a backing store in groups, it should start a batch which will
* end either when <batch_num_blocks> has been added or batch_stop() has
* been called. In either case, it should end the batch and write to its
* backing store.
*
* If a batch is already in-progress, this function must return false.
* If a batch was started by this call, it must return true.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param batch_num_blocks number of blocks to batch together
*
* @return true if we started the batch, false if already started
*/
virtual bool batch_start(uint64_t batch_num_blocks=0, uint64_t batch_bytes=0) = 0;
/**
* @brief ends a batch transaction
*
* If the subclass implements batching, this function should store the
* batch it is currently on and mark it finished.
*
* If no batch is in-progress, this function should throw a DB_ERROR.
* This exception may change in the future if it is deemed necessary to
* have a more granular exception type for this scenario.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*/
virtual void batch_stop() = 0;
/**
* @brief sets whether or not to batch transactions
*
* If the subclass implements batching, this function tells it to begin
* batching automatically.
*
* If the subclass implements batching and has a batch in-progress, a
* parameter of false should disable batching and call batch_stop() to
* store the current batch.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param bool batch whether or not to use batch transactions.
*/
virtual void set_batch_transactions(bool) = 0;
virtual void block_txn_start(bool readonly=false) = 0;
virtual void block_txn_stop() = 0;
virtual void block_txn_abort() = 0;
virtual void set_hard_fork(HardFork* hf);
// adds a block with the given metadata to the top of the blockchain, returns the new height
/**
* @brief handles the addition of a new block to BlockchainDB
*
* This function organizes block addition and calls various functions as
* necessary.
*
* NOTE: subclass implementations of this (or the functions it calls) need
* to handle undoing any partially-added blocks in the event of a failure.
*
* If any of this cannot be done, the subclass should throw the corresponding
* subclass of DB_EXCEPTION
*
* @param blk the block to be added
* @param block_size the size of the block (transactions and all)
* @param cumulative_difficulty the accumulated difficulty after this block
* @param coins_generated the number of coins generated total after this block
* @param txs the transactions in the block
*
* @return the height of the chain post-addition
*/
virtual uint64_t add_block( const block& blk
, const size_t& block_size
, const difficulty_type& cumulative_difficulty
, const uint64_t& coins_generated
, const std::vector<transaction>& txs
);
/**
* @brief checks if a block exists
*
* @param h the hash of the requested block
* @param height if non NULL, returns the block's height if found
*
* @return true of the block exists, otherwise false
*/
virtual bool block_exists(const crypto::hash& h, uint64_t *height = NULL) const = 0;
/**
* @brief fetches the block with the given hash
*
* The subclass should return the requested block.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param h the hash to look for
*
* @return the block requested
*/
virtual cryptonote::blobdata get_block_blob(const crypto::hash& h) const = 0;
/**
* @brief fetches the block with the given hash
*
* Returns the requested block.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param h the hash to look for
*
* @return the block requested
*/
virtual block get_block(const crypto::hash& h) const;
/**
* @brief gets the height of the block with a given hash
*
* The subclass should return the requested height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param h the hash to look for
*
* @return the height
*/
virtual uint64_t get_block_height(const crypto::hash& h) const = 0;
/**
* @brief fetch a block header
*
* The subclass should return the block header from the block with
* the given hash.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param h the hash to look for
*
* @return the block header
*/
virtual block_header get_block_header(const crypto::hash& h) const = 0;
/**
* @brief fetch a block blob by height
*
* The subclass should return the block at the given height.
*
* If the block does not exist, that is to say if the blockchain is not
* that high, then the subclass should throw BLOCK_DNE
*
* @param height the height to look for
*
* @return the block blob
*/
virtual cryptonote::blobdata get_block_blob_from_height(const uint64_t& height) const = 0;
/**
* @brief fetch a block by height
*
* If the block does not exist, that is to say if the blockchain is not
* that high, then the subclass should throw BLOCK_DNE
*
* @param height the height to look for
*
* @return the block
*/
virtual block get_block_from_height(const uint64_t& height) const;
/**
* @brief fetch a block's timestamp
*
* The subclass should return the timestamp of the block with the
* given height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param height the height requested
*
* @return the timestamp
*/
virtual uint64_t get_block_timestamp(const uint64_t& height) const = 0;
/**
* @brief fetch the top block's timestamp
*
* The subclass should return the timestamp of the most recent block.
*
* @return the top block's timestamp
*/
virtual uint64_t get_top_block_timestamp() const = 0;
/**
* @brief fetch a block's size
*
* The subclass should return the size of the block with the
* given height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param height the height requested
*
* @return the size
*/
virtual size_t get_block_size(const uint64_t& height) const = 0;
/**
* @brief fetch a block's cumulative difficulty
*
* The subclass should return the cumulative difficulty of the block with the
* given height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param height the height requested
*
* @return the cumulative difficulty
*/
virtual difficulty_type get_block_cumulative_difficulty(const uint64_t& height) const = 0;
/**
* @brief fetch a block's difficulty
*
* The subclass should return the difficulty of the block with the
* given height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param height the height requested
*
* @return the difficulty
*/
virtual difficulty_type get_block_difficulty(const uint64_t& height) const = 0;
/**
* @brief fetch a block's already generated coins
*
* The subclass should return the total coins generated as of the block
* with the given height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param height the height requested
*
* @return the already generated coins
*/
virtual uint64_t get_block_already_generated_coins(const uint64_t& height) const = 0;
/**
* @brief fetch a block's hash
*
* The subclass should return hash of the block with the
* given height.
*
* If the block does not exist, the subclass should throw BLOCK_DNE
*
* @param height the height requested
*
* @return the hash
*/
virtual crypto::hash get_block_hash_from_height(const uint64_t& height) const = 0;
/**
* @brief fetch a list of blocks
*
* The subclass should return a vector of blocks with heights starting at
* h1 and ending at h2, inclusively.
*
* If the height range requested goes past the end of the blockchain,
* the subclass should throw BLOCK_DNE. (current implementations simply
* don't catch this exception as thrown by methods called within)
*
* @param h1 the start height
* @param h2 the end height
*
* @return a vector of blocks
*/
virtual std::vector<block> get_blocks_range(const uint64_t& h1, const uint64_t& h2) const = 0;
/**
* @brief fetch a list of block hashes
*
* The subclass should return a vector of block hashes from blocks with
* heights starting at h1 and ending at h2, inclusively.
*
* If the height range requested goes past the end of the blockchain,
* the subclass should throw BLOCK_DNE. (current implementations simply
* don't catch this exception as thrown by methods called within)
*
* @param h1 the start height
* @param h2 the end height
*
* @return a vector of block hashes
*/
virtual std::vector<crypto::hash> get_hashes_range(const uint64_t& h1, const uint64_t& h2) const = 0;
/**
* @brief fetch the top block's hash
*
* The subclass should return the hash of the most recent block
*
* @return the top block's hash
*/
virtual crypto::hash top_block_hash() const = 0;
/**
* @brief fetch the top block
*
* The subclass should return most recent block
*
* @return the top block
*/
virtual block get_top_block() const = 0;
/**
* @brief fetch the current blockchain height
*
* The subclass should return the current blockchain height
*
* @return the current blockchain height
*/
virtual uint64_t height() const = 0;
/**
* <!--
* TODO: Rewrite (if necessary) such that all calls to remove_* are
* done in concrete members of this base class.
* -->
*
* @brief pops the top block off the blockchain
*
* The subclass should remove the most recent block from the blockchain,
* along with all transactions, outputs, and other metadata created as
* a result of its addition to the blockchain. Most of this is handled
* by the concrete members of the base class provided the subclass correctly
* implements remove_* functions.
*
* The subclass should return by reference the popped block and
* its associated transactions
*
* @param blk return-by-reference the block which was popped
* @param txs return-by-reference the transactions from the popped block
*/
virtual void pop_block(block& blk, std::vector<transaction>& txs);
/**
* @brief check if a transaction with a given hash exists
*
* The subclass should check if a transaction is stored which has the
* given hash and return true if so, false otherwise.
*
* @param h the hash to check against
2016-04-05 16:13:16 -04:00
* @param tx_id (optional) returns the tx_id for the tx hash
*
* @return true if the transaction exists, otherwise false
*/
virtual bool tx_exists(const crypto::hash& h) const = 0;
virtual bool tx_exists(const crypto::hash& h, uint64_t& tx_id) const = 0;
// return unlock time of tx with hash <h>
/**
* @brief fetch a transaction's unlock time/height
*
* The subclass should return the stored unlock time for the transaction
* with the given hash.
*
* If no such transaction exists, the subclass should throw TX_DNE.
*
* @param h the hash of the requested transaction
*
* @return the unlock time/height
*/
virtual uint64_t get_tx_unlock_time(const crypto::hash& h) const = 0;
// return tx with hash <h>
// throw if no such tx exists
/**
* @brief fetches the transaction with the given hash
*
* If the transaction does not exist, the subclass should throw TX_DNE.
*
* @param h the hash to look for
*
* @return the transaction with the given hash
*/
virtual transaction get_tx(const crypto::hash& h) const;
/**
* @brief fetches the transaction with the given hash
*
* If the transaction does not exist, the subclass should return false.
*
* @param h the hash to look for
*
* @return true iff the transaction was found
*/
virtual bool get_tx(const crypto::hash& h, transaction &tx) const;
/**
* @brief fetches the transaction blob with the given hash
*
* The subclass should return the transaction stored which has the given
* hash.
*
* If the transaction does not exist, the subclass should return false.
*
* @param h the hash to look for
*
* @return true iff the transaction was found
*/
virtual bool get_tx_blob(const crypto::hash& h, cryptonote::blobdata &tx) const = 0;
/**
* @brief fetches the total number of transactions ever
*
* The subclass should return a count of all the transactions from
* all blocks.
*
* @return the number of transactions in the blockchain
*/
virtual uint64_t get_tx_count() const = 0;
/**
* @brief fetches a list of transactions based on their hashes
*
* The subclass should attempt to fetch each transaction referred to by
* the hashes passed.
*
* Currently, if any of the transactions is not in BlockchainDB, the call
* to get_tx in the implementation will throw TX_DNE.
*
* <!-- TODO: decide if this behavior is correct for missing transactions -->
*
* @param hlist a list of hashes
*
* @return the list of transactions
*/
virtual std::vector<transaction> get_tx_list(const std::vector<crypto::hash>& hlist) const = 0;
// returns height of block that contains transaction with hash <h>
/**
* @brief fetches the height of a transaction's block
*
* The subclass should attempt to return the height of the block containing
* the transaction with the given hash.
*
* If the transaction cannot be found, the subclass should throw TX_DNE.
*
* @param h the hash of the transaction
*
* @return the height of the transaction's block
*/
virtual uint64_t get_tx_block_height(const crypto::hash& h) const = 0;
// returns the total number of outputs of amount <amount>
/**
* @brief fetches the number of outputs of a given amount
*
* The subclass should return a count of outputs of the given amount,
* or zero if there are none.
*
* <!-- TODO: should outputs spent with a low mixin (especially 0) be
* excluded from the count? -->
*
* @param amount the output amount being looked up
*
* @return the number of outputs of the given amount
*/
virtual uint64_t get_num_outputs(const uint64_t& amount) const = 0;
/**
* @brief return index of the first element (should be hidden, but isn't)
*
* @return the index
*/
virtual uint64_t get_indexing_base() const { return 0; }
/**
* @brief get some of an output's data
*
* The subclass should return the public key, unlock time, and block height
* for the output with the given amount and index, collected in a struct.
*
* If the output cannot be found, the subclass should throw OUTPUT_DNE.
*
* If any of these parts cannot be found, but some are, the subclass
* should throw DB_ERROR with a message stating as much.
*
* @param amount the output amount
* @param index the output's index (indexed by amount)
*
* @return the requested output data
*/
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
virtual output_data_t get_output_key(const uint64_t& amount, const uint64_t& index) = 0;
/**
* @brief get some of an output's data
*
* The subclass should return the public key, unlock time, and block height
* for the output with the given global index, collected in a struct.
*
* If the output cannot be found, the subclass should throw OUTPUT_DNE.
*
* If any of these parts cannot be found, but some are, the subclass
* should throw DB_ERROR with a message stating as much.
*
* @param global_index the output's index (global)
*
* @return the requested output data
*/
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
virtual output_data_t get_output_key(const uint64_t& global_index) const = 0;
/**
* @brief gets an output's tx hash and index
*
* The subclass should return the hash of the transaction which created the
* output with the global index given, as well as its index in that transaction.
*
* @param index an output's global index
*
* @return the tx hash and output index
*/
virtual tx_out_index get_output_tx_and_index_from_global(const uint64_t& index) const = 0;
/**
* @brief gets an output's tx hash and index
*
* The subclass should return the hash of the transaction which created the
* output with the amount and index given, as well as its index in that
* transaction.
*
* @param amount an output amount
* @param index an output's amount-specific index
*
* @return the tx hash and output index
*/
virtual tx_out_index get_output_tx_and_index(const uint64_t& amount, const uint64_t& index) const = 0;
/**
* @brief gets some outputs' tx hashes and indices
*
* This function is a mirror of
* get_output_tx_and_index(const uint64_t& amount, const uint64_t& index),
* but for a list of outputs rather than just one.
*
* @param amount an output amount
* @param offsets a list of amount-specific output indices
* @param indices return-by-reference a list of tx hashes and output indices (as pairs)
*/
virtual void get_output_tx_and_index(const uint64_t& amount, const std::vector<uint64_t> &offsets, std::vector<tx_out_index> &indices) const = 0;
/**
* @brief gets outputs' data
*
* This function is a mirror of
* get_output_data(const uint64_t& amount, const uint64_t& index)
* but for a list of outputs rather than just one.
*
* @param amount an output amount
* @param offsets a list of amount-specific output indices
* @param outputs return-by-reference a list of outputs' metadata
*/
virtual void get_output_key(const uint64_t &amount, const std::vector<uint64_t> &offsets, std::vector<output_data_t> &outputs, bool allow_partial = false) = 0;
/*
* FIXME: Need to check with git blame and ask what this does to
* document it
*/
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
virtual bool can_thread_bulk_indices() const = 0;
/**
* @brief gets output indices (amount-specific) for a transaction's outputs
*
* The subclass should fetch the amount-specific output indices for each
2016-04-05 16:13:16 -04:00
* output in the transaction with the given ID.
*
* If the transaction does not exist, the subclass should throw TX_DNE.
*
* If an output cannot be found, the subclass should throw OUTPUT_DNE.
*
2016-04-05 16:13:16 -04:00
* @param tx_id a transaction ID
*
* @return a list of amount-specific output indices
*/
virtual std::vector<uint64_t> get_tx_amount_output_indices(const uint64_t tx_id) const = 0;
/**
* @brief check if a key image is stored as spent
*
* @param img the key image to check for
*
* @return true if the image is present, otherwise false
*/
virtual bool has_key_image(const crypto::key_image& img) const = 0;
/**
* @brief add a txpool transaction
*
* @param details the details of the transaction to add
*/
virtual void add_txpool_tx(const transaction &tx, const txpool_tx_meta_t& details) = 0;
/**
* @brief update a txpool transaction's metadata
*
* @param txid the txid of the transaction to update
* @param details the details of the transaction to update
*/
virtual void update_txpool_tx(const crypto::hash &txid, const txpool_tx_meta_t& details) = 0;
/**
* @brief get the number of transactions in the txpool
*/
virtual uint64_t get_txpool_tx_count(bool include_unrelayed_txes = true) const = 0;
/**
* @brief check whether a txid is in the txpool
*/
virtual bool txpool_has_tx(const crypto::hash &txid) const = 0;
/**
* @brief remove a txpool transaction
*
* @param txid the transaction id of the transation to remove
*/
virtual void remove_txpool_tx(const crypto::hash& txid) = 0;
/**
* @brief get a txpool transaction's metadata
*
* @param txid the transaction id of the transation to lookup
* @param meta the metadata to return
*
* @return true if the tx meta was found, false otherwise
*/
virtual bool get_txpool_tx_meta(const crypto::hash& txid, txpool_tx_meta_t &meta) const = 0;
/**
* @brief get a txpool transaction's blob
*
* @param txid the transaction id of the transation to lookup
* @param bd the blob to return
*
* @return true if the txid was in the txpool, false otherwise
*/
virtual bool get_txpool_tx_blob(const crypto::hash& txid, cryptonote::blobdata &bd) const = 0;
/**
* @brief get a txpool transaction's blob
*
* @param txid the transaction id of the transation to lookup
*
* @return the blob for that transaction
*/
virtual cryptonote::blobdata get_txpool_tx_blob(const crypto::hash& txid) const = 0;
/**
* @brief runs a function over all txpool transactions
*
* The subclass should run the passed function for each txpool tx it has
* stored, passing the tx id and metadata as its parameters.
*
* If any call to the function returns false, the subclass should return
* false. Otherwise, the subclass returns true.
*
* @param std::function fn the function to run
*
* @return false if the function returns false for any transaction, otherwise true
*/
virtual bool for_all_txpool_txes(std::function<bool(const crypto::hash&, const txpool_tx_meta_t&, const cryptonote::blobdata*)>, bool include_blob = false, bool include_unrelayed_txes = true) const = 0;
/**
* @brief runs a function over all key images stored
*
* The subclass should run the passed function for each key image it has
* stored, passing the key image as its parameter.
*
* If any call to the function returns false, the subclass should return
* false. Otherwise, the subclass returns true.
*
* @param std::function fn the function to run
*
* @return false if the function returns false for any key image, otherwise true
*/
virtual bool for_all_key_images(std::function<bool(const crypto::key_image&)>) const = 0;
/**
* @brief runs a function over a range of blocks
*
* The subclass should run the passed function for each block in the
* specified range, passing (block_height, block_hash, block) as its parameters.
*
* If any call to the function returns false, the subclass should return
* false. Otherwise, the subclass returns true.
*
* The subclass should throw DB_ERROR if any of the expected values are
* not found. Current implementations simply return false.
*
* @param h1 the start height
* @param h2 the end height
* @param std::function fn the function to run
*
* @return false if the function returns false for any block, otherwise true
*/
virtual bool for_blocks_range(const uint64_t& h1, const uint64_t& h2, std::function<bool(uint64_t, const crypto::hash&, const cryptonote::block&)>) const = 0;
/**
* @brief runs a function over all transactions stored
*
* The subclass should run the passed function for each transaction it has
* stored, passing (transaction_hash, transaction) as its parameters.
*
* If any call to the function returns false, the subclass should return
* false. Otherwise, the subclass returns true.
*
* The subclass should throw DB_ERROR if any of the expected values are
* not found. Current implementations simply return false.
*
* @param std::function fn the function to run
*
* @return false if the function returns false for any transaction, otherwise true
*/
virtual bool for_all_transactions(std::function<bool(const crypto::hash&, const cryptonote::transaction&)>) const = 0;
/**
* @brief runs a function over all outputs stored
*
* The subclass should run the passed function for each output it has
* stored, passing (amount, transaction_hash, tx_local_output_index)
* as its parameters.
*
* If any call to the function returns false, the subclass should return
* false. Otherwise, the subclass returns true.
*
* The subclass should throw DB_ERROR if any of the expected values are
* not found. Current implementations simply return false.
*
* @param std::function f the function to run
*
* @return false if the function returns false for any output, otherwise true
*/
virtual bool for_all_outputs(std::function<bool(uint64_t amount, const crypto::hash &tx_hash, size_t tx_idx)> f) const = 0;
//
// Hard fork related storage
//
/**
* @brief sets which hardfork version a height is on
*
* @param height the height
* @param version the version
*/
virtual void set_hard_fork_version(uint64_t height, uint8_t version) = 0;
/**
* @brief checks which hardfork version a height is on
*
* @param height the height
*
* @return the version
*/
virtual uint8_t get_hard_fork_version(uint64_t height) const = 0;
/**
* @brief verify hard fork info in database
*/
virtual void check_hard_fork_info() = 0;
/**
* @brief delete hard fork info from database
*/
virtual void drop_hard_fork_info() = 0;
/**
* @brief return a histogram of outputs on the blockchain
*
* @param amounts optional set of amounts to lookup
* @param unlocked whether to restrict count to unlocked outputs
* @param recent_cutoff timestamp to determine whether an output is recent
*
* @return a set of amount/instances
*/
virtual std::map<uint64_t, std::tuple<uint64_t, uint64_t, uint64_t>> get_output_histogram(const std::vector<uint64_t> &amounts, bool unlocked, uint64_t recent_cutoff) const = 0;
/**
* @brief is BlockchainDB in read-only mode?
*
* @return true if in read-only mode, otherwise false
*/
virtual bool is_read_only() const = 0;
// TODO: this should perhaps be (or call) a series of functions which
// progressively update through version updates
/**
* @brief fix up anything that may be wrong due to past bugs
*/
virtual void fixup();
/**
* @brief set whether or not to automatically remove logs
*
* This function is only relevant for one implementation (BlockchainBDB), but
* is here to keep BlockchainDB users implementation-agnostic.
*
* @param auto_remove whether or not to auto-remove logs
*/
** CHANGES ARE EXPERIMENTAL (FOR TESTING ONLY) Bockchain: 1. Optim: Multi-thread long-hash computation when encountering groups of blocks. 2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible. 3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible. 4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks. 5. Optim: Multi-thread signature computation whenever possible. 6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD) 7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???). 8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads). Berkeley-DB: 1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc). 2. Fix: Unable to pop blocks on reorganize due to transaction errors. 3. Patch: Large number of transaction aborts when running multi-threaded bulk queries. 4. Patch: Insufficient locks error when running full sync. 5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation. 6. Optim: Add bulk queries to get output global indices. 7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 9. Optim: Added thread-safe buffers used when multi-threading bulk queries. 10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details) 11. Mod: Added checkpoint thread and auto-remove-logs option. 12. *Now usable on 32-bit systems like RPI2. LMDB: 1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect) 2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3) 3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key 4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details) 5. Mod: Auto resize to +1GB instead of multiplier x1.5 ETC: 1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete. 2. Fix: 32-bit saturation bug when computing next difficulty on large blocks. [PENDING ISSUES] 1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization. This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD. 2. Berkeley db, possible bug "unable to allocate memory". TBD. [NEW OPTIONS] (*Currently all enabled for testing purposes) 1. --fast-block-sync arg=[0:1] (default: 1) a. 0 = Compute long hash per block (may take a while depending on CPU) b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence) 2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000) a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions. b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache. Fast - Write meta-data but defer data flush. Fastest - Defer meta-data and data flush. Sync - Flush data after nblocks_per_sync and wait. Async - Flush data after nblocks_per_sync but do not wait for the operation to finish. 3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower) Max number of threads to use when computing long-hash in groups. 4. --show-time-stats arg=[0:1] (default: 1) Show benchmark related time stats. 5. --db-auto-remove-logs arg=[0:1] (default: 1) For berkeley-db only. Auto remove logs if enabled. **Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version. At the moment, you need a full resync to use this optimized version. [PERFORMANCE COMPARISON] **Some figures are approximations only. Using a baseline machine of an i7-2600K+SSD+(with full pow computation): 1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain. 2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain. 3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain. Averate procesing times (with full pow computation): lmdb-optimized: 1. tx_ave = 2.5 ms / tx 2. block_ave = 5.87 ms / block memory-official-repo: 1. tx_ave = 8.85 ms / tx 2. block_ave = 19.68 ms / block lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e) 1. tx_ave = 47.8 ms / tx 2. block_ave = 64.2 ms / block **Note: The following data denotes processing times only (does not include p2p download time) lmdb-optimized processing times (with full pow computation): 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000). 2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000). 3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000). lmdb-optimized processing times (with per-block-checkpoint) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with full pow computation) 1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000). 2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000). berkeley-db optimized processing times (with per-block-checkpoint) 1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
2015-07-10 16:09:32 -04:00
void set_auto_remove_logs(bool auto_remove) { m_auto_remove_logs = auto_remove; }
bool m_open; //!< Whether or not the BlockchainDB is open/ready for use
mutable epee::critical_section m_synchronization_lock; //!< A lock, currently for when BlockchainLMDB needs to resize the backing db file
}; // class BlockchainDB
BlockchainDB *new_db(const std::string& db_type);
} // namespace cryptonote
#endif // BLOCKCHAIN_DB_H