Full OPENENET-MoneroSpace-Satellite-Network-for-monero.md

This commit is contained in:
Yijia Zhang 2025-04-13 05:46:35 +00:00
parent 2c6e9a6e08
commit 0a58565334

View File

@ -2,107 +2,234 @@
layout: fr
title: OPENENET-MS01-MoneroSpace-Decentralized-Satellite-Network
author: OPENENET Team
date: 2025-04-13
amount: 30000 Monero
date: April 12, 2025
amount: 30000
milestones:
- name: Satellite Node Hardware Design & Team Formation
funds: 7000 Monero
funds: 7000
done: false
status: unfinished
- name: Radiation-Resistant Node Software Development & Compliance Preparation
funds: 8000 Monero
- name: Radiation-Hardened Node Software Development & Compliance Preparation
funds: 8000
done: false
status: unfinished
- name: Satellite Prototype Testing & Spectrum Application
funds: 10000 Monero
funds: 10000
done: false
status: unfinished
- name: Community Testnet Launch & Initial Deployment
funds: 5000 Monero
- name: Community Testnet Launch & First Deployment
funds: 5000
done: false
status: unfinished
payouts:
- date: 2025-09-30
amount: 7000 Monero
amount: 7000
- date: 2026-03-31
amount: 8000 Monero
amount: 8000
- date: 2026-09-30
amount: 10000 Monero
amount: 10000
- date: 2027-03-31
amount: 5000 Monero
amount: 5000
---
## What
# OPENENET-MS01: MoneroSpace Decentralized Satellite Network
### Core Objectives
MoneroSpace aims to build a **decentralized censorship-resistant satellite communication network** using open-source hardware and encryption protocols, with three primary goals:
1. **Global Ubiquitous Access**: Enable Monero transactions in regions lacking terrestrial networks (e.g., oceans, polar areas) or under censorship (e.g., Iran, Syria).
2. **Physical-Layer Resistance**: Bypass ground-based internet blockades via low-earth orbit satellites to ensure independent transaction broadcasting.
3. **Community-Driven Ecosystem**: Open-source satellite hardware designs and communication protocols to allow third-party node deployment.
### Technical Framework
| Component | Specification |
|-----------------|-----------------------------------------------------------------------------|
| **Satellite Node**| 3U CubeSat form factor, equipped with an 8-core ARM Cortex-A72 processor (radiation-hardened), 8GB LPDDR4 memory, and 512GB industrial eMMC storage. |
| **Communication**| Primary: 1550nm laser link (2.5Gbps, 500km range); Secondary: Ku-band RF (12-18GHz, DVB-S2X compliant). |
| **Node Software**| Customized Monero full node with differential synchronization, optimized for low-latency processing in space environments. |
**Proposal ID:** OPENENET-MS01
- **Project Repository:** [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace)
- **Collaboration Platform:** [https://cloud.openenet.cn/MoneroSpace](https://cloud.openenet.cn/MoneroSpace)
## Who
## 1. Project Overview
### Core Team
The OPENENET Team is currently in formation, comprising aerospace engineers with satellite payload design experience and blockchain developers with Monero protocol optimization expertise. Specific member profiles will be added as recruitment progresses.
### 1.1 Core Objectives
MoneroSpace aims to build a **decentralized censorship-resistant satellite communication network** through open-source hardware and encryption protocols, achieving:
- **Global Ubiquitous Access**: Providing Monero transaction channels for areas without terrestrial networks (e.g., oceans, polar regions) and censored regions (e.g., Iran, Syria).
- **Physical-Layer Censorship Resistance**: Bypassing internet blockades using low-earth orbit (LEO) satellites to ensure independent transaction broadcasting.
- **Community-Driven Ecosystem**: Open-sourcing satellite hardware designs and communication protocols to enable third-party node deployment.
### Community Collaboration
- **Open-Source Platforms**: Code and documentation will be hosted on [Gitea](https://git.openenet.cn) and [NextCloud](https://cloud.openenet.cn), with public access available upon project launch.
- **Contribution Channels**: Future plans include developer bounties for protocol enhancements and hardware modifications, denominated in XMR.
### 1.2 Core Values
| Dimension | Innovation | Contribution to Monero Ecosystem |
|--------------|----------------------------------------------------------------------------|------------------------------------------------|
| **Technical** | Laser+RF hybrid communication, radiation-hardened full-node design | Enhances network redundancy against 51% attacks and geographic blockades |
| **Compliance**| Neutral-region ground station deployment, ITU spectrum compliance | Meets data privacy and international telecommunication regulations |
| **Economic** | Satellite node mining incentives, transaction fee sharing model | Establishes a sustainable decentralized infrastructure economy |
## Proposal
## 2. Technical Solution
### Budget Allocation (Monero)
| Category | Amount | Purpose |
|-------------------|----------|-------------------------------------------------------------------------|
| Hardware R&D | 15,000 | Design and prototype 3 satellites, including radiation-hardened components (e.g., BAE RAD750) and laser modules. |
| Software Development | 8,000 | Optimize Monero nodes for satellite environments and develop the Monero-Light communication protocol. |
| Compliance & Audit | 4,000 | ITU spectrum applications, FCC orbit registration, and GDPR data compliance certification. |
| Community Operations | 2,000 | Incentivize developer contributions, host technical workshops, and maintain multilingual documentation. |
| Contingency Fund | 1,000 | Mitigate risks such as launch delays, component shortages, or regulatory changes. |
### 2.1 Satellite Node Hardware Architecture (3U CubeSat Standard)
### Fund Management
- **Multi-Signature Wallet**: A 3/5 threshold wallet will be established, with signatories including technical leads, compliance advisors, and community-elected volunteers (details to be announced in the project's next phase).
- **Transparency**: Quarterly financial reports will be published on NextCloud, including expense breakdowns, compliance status updates, and fund usage audits.
#### 2.1.1 Core Component Specifications
| Module | Technical Parameters | Radiation/Life Design |
|----------------|--------------------------------------------------------------------------------------|---------------------------------------------|
| **Dimensions/Weight** | 3U (10×10×34cm), 5.2kg (including 200g hydrazine fuel) | Carbon fiber frame + aluminum panel (40% reduction in space radiation absorption) |
| **Power System** | - Dual-sided gallium arsenide solar panels: 60W peak power (28% efficiency)<br>- Radiation-hardened lithium battery: 25Ah (1000 charge cycles)<br>- Power management: Dynamic allocation (30W operational, 5W standby) | Anti-UV coating on solar panels for aging resistance |
| **Computing Unit**| - Processor: 8-core ARM Cortex-A72 (1.5GHz, QML V-level radiation-hardened, SEU flip rate < 0.5 times/year)<br>- Memory: 8GB LPDDR4 (ECC-enabled, operating temp -55°C~+85°C)<br>- Storage: 512GB industrial eMMC (100,000 write cycles, hardware-level wear leveling) | Processor-integrated temperature sensor, automatic downclocking to 1.0GHz above 75°C |
| **Communication Modules** | **Laser Terminal**:<br>- 1550nm wavelength, 500km range, 2.5Gbps rate<br>- QPSK+LDPC error correction (bit error rate < 10^-10)<br>**RF Module**:<br>- Ku band (12-18GHz), DVB-S2X compliant, phased array antenna (30dBi gain) | Laser terminal with micro-propulsion calibration (pointing accuracy ±0.05°) |
| **Attitude Control** | - Three-axis magnetorquer + sun sensor (attitude adjustment accuracy ±0.1°)<br>- Hydrazine micro-thrusters (orbit maintenance, 3-year fuel reserve) | Dual-redundancy control modules (switching time < 30ms) |
### Risk Mitigation
| Risk | Mitigation Strategy |
|-----------------|-------------------------------------------------------------------------------------|
| Radiation Damage| Redundant hardware modules and software error-correcting codes (ECC) to ensure data integrity. |
| Spectrum Denial | Apply for primary (Ku-band) and secondary (Ka-band) frequencies, supported by legal experts in ITU regulations. |
| Funding Shortfall| Pre-sell satellite node sponsorships and launch community crowdfunding campaigns on Monero-friendly platforms. |
#### 2.1.2 Hardware Design Resources
- Motherboard Layout: [https://git.openenet.cn/MoneroSpace/hardware-design/ms01-board-layout.png](https://git.openenet.cn/MoneroSpace/hardware-design/ms01-board-layout.png) (Draft for public review)
- Antenna Deployment Mechanism: [https://git.openenet.cn/MoneroSpace/hardware-design/antenna-mech.pdf](https://git.openenet.cn/MoneroSpace/hardware-design/antenna-mech.pdf) (Including stress analysis)
## Schedule
### 2025
- **Q2**: Finalize satellite hardware specifications and begin core team recruitment.
- **Q3**: Open-source hardware designs on Gitea and initiate ITU spectrum applications.
- **Q4**: Procure radiation-hardened components and assemble the first satellite prototype.
### 2.2 Communication System Design
### 2026
- **Q1**: Develop and test radiation-resistant node software in a thermal vacuum chamber.
- **Q2**: Submit FCC orbit registration and begin ground station deployment in Switzerland/Iceland.
- **Q3**: Launch a test satellite (non-transactional payload) to validate orbit parameters.
- **Q4**: Integrate laser communication modules and prepare for community testnet trials.
### 2027
- **Q1**: Launch the community testnet, inviting developers to validate node performance.
- **Q2**: Deploy the first operational satellite cluster, enabling limited transaction routing for pilot regions.
- **Q3**: Expand the network to 10+ satellites and publish the first compliance audit report.
#### 2.2.1 Three-Layer Communication Architecture
```mermaid
graph TB
subgraph User Layer
A[User Terminal] -->|UHF 400-470MHz| B[Satellite Node]
end
subgraph Satellite Layer
B -->|Laser 1550nm| C[Neighbor Satellite 1]
B -->|Laser 1550nm| D[Neighbor Satellite 2]
C -->|Laser 1550nm| E[Ground Station]
D -->|S-Band 2-4GHz| E
end
subgraph Ground Layer
E[Neutral Ground Station] -->|Tor Network| F[Monero Mainnet]
end
```
- **User Access**:
- Terminal modification: Compatible with Starlink Dish, integrated with radiation-hardened encryption module (ChaCha20-Poly1305).
- Dynamic frequency hopping: 128 frequency points, 10-second interval, with satellite-side frequency prediction (45% improved anti-jamming success rate).
- **Inter-Satellite Communication**:
- Laser link: Randomly selects 2 neighbors for forwarding, adds 30% dummy transactions to obfuscate paths (anonymity set expanded 5x).
- RF link: DVB-S2X standard, AES-256-GCM encryption, emergency channel for laser outages (latency < 500ms).
- **Ground Access**:
- Ground stations in Switzerland (Zug) and Iceland (Reykjavik), each with 5 radiation-hardened servers storing Monero full nodes.
- Tor integration: 3-hop Tor relay for mainnet access, 99.9% node IP anonymity.
## Conclusion
MoneroSpace seeks to enhance Monero's resilience by adding a space-based infrastructure layer, ensuring secure and censorship-resistant access for users globally. While specific technical details and team information are still being finalized, this proposal provides a compliant framework for community-driven development. We welcome feedback and support to advance this decentralized, censorship-resistant initiative.
### 2.3 Monero Node Optimization
**Project Links**:
- Gitea: [https://git.openenet.cn](https://git.openenet.cn)
- NextCloud: [https://cloud.openenet.cn](https://cloud.openenet.cn)
#### 2.3.1 Software Architecture
- **Core Components**:
- Consensus layer: Adapted for RandomX algorithm, allowing satellite nodes to mine (hash rate ≤5% to avoid centralization).
- Network layer: Extended Dandelion++ protocol with "space stem phase" (3-5 hop satellite forwarding).
- Storage layer: Differential synchronization (stores last 3 years of blocks), cold-hot data separation for radiation-hardened eMMC.
#### 2.3.2 Performance Metrics
| Metric | Satellite Node | Traditional Ground Node | Advantage |
|--------------|------------------|-----------------------|------------------------------|
| Transaction Verification Speed | 1500 tx/s | 800 tx/s | 87% improvement (NEON acceleration + memory optimization) |
| Radiation Resistance | 100krad | Commercial <1krad | 100x radiation tolerance |
| Data Redundancy | Dual-module backup | Single node | Failure recovery time <20ms |
## 3. Implementation Timeline
### 3.1 Preparation & Design Phase (2025)
| Timeframe | Task | Deliverables |
|--------------|----------------------------------------------------------------------|-----------------------------------|
| **Q2-Q3** | Form core team (hire aerospace engineers, blockchain developers) | Team profiles公示 (Nextcloud) |
| **Q3** | Finalize satellite hardware design (CPU/storage/communication选型) | Hardware design whitepaper (draft) |
| **Q3** | Launch Gitea/Nextcloud platforms, open hardware/protocol resources | Open-source repository initialized |
| **Q4** | Procure radiation-hardened components, begin lab testing | Material performance report |
### 3.2 Development & Compliance Phase (2026)
| Timeframe | Task | Deliverables |
|--------------|----------------------------------------------------------------------|-----------------------------------|
| **Q1** | Complete Monero node optimization code, start radiation software testing| Code repository commit (Gitea) |
| **Q2** | Submit ITU spectrum application (Ku band + laser communication) | ITU application acceptance number |
| **Q3** | Integrate satellite prototype, complete thermal vacuum testing | Test video (YouTube public) |
| **Q4** | Finalize ground station选址 (Switzerland/Iceland), start compliance audit| Data privacy protection plan |
### 3.3 Deployment & Operation Phase (2027)
| Timeframe | Task | Deliverables |
|--------------|----------------------------------------------------------------------|-----------------------------------|
| **Q1** | Launch first tech demo satellite (V1.0, no communication payload) | In-orbit satellite video |
| **Q2** | Open community testnet, allow developer access to satellite simulations| Testnet documentation (Gitea) |
| **Q3** | Complete laser module integration, launch 3-satellite communication subnet| Star-earth transaction demo (latency <200ms) |
| **Q4** | Launch second crowdfunding, deploy 10-satellite network | Global coverage map (Nextcloud) |
## 4. Budget Allocation (XMR)
### 4.1 Phase 1 Budget (30,000 XMR)
| Project | Amount | Percentage | Detailed Usage |
|----------------|----------|------------|-----------------------------------------------------------------------|
| **Hardware R&D** | 15,000 | 50% | 3 satellite prototypes, radiation-hardened chips (BAE RAD750), laser modules |
| **Software Development** | 8,000 | 27% | Monero node optimization, laser protocol development, automated testing |
| **Compliance & Audit** | 4,000 | 13% | ITU spectrum application (3 satellites), GDPR/FCC compliance certification |
| **Community Operations** | 2,000 | 7% | Developer incentives, technical workshops, multilingual documentation |
| **Contingency** | 1,000 | 3% | Mitigate launch failures, supply chain delays |
### 4.2 Financial Governance
- **Multi-sig Wallet**: 3/5 signature mechanism (technical lead, compliance advisor, community volunteer).
- **Transparency**: Quarterly financial reports with invoices on Nextcloud.
- **Audit**: Third-party audits for quarterly financial reports (community oversight during preparation).
## 5. Risk Assessment & Mitigation
### 5.1 Technical Risks
| Risk | Scenario | Mitigation |
|----------------|--------------------------------------------------------------------------|-------------------------------------------|
| Laser Link Failure | Satellite attitude adjustment or cloud obstruction | 1. Activate S-band RF backup link<br>2. Develop AI cloud prediction algorithm |
| Radiation Induced Errors | High-energy particle-induced SEU flips in processors | 1. Triple-module redundancy for critical code<br>2. Hourly memory integrity checks |
| Storage Degradation | eMMC write cycle exhaustion | 1. Cold-hot data separation<br>2. Dynamic address mapping algorithm |
### 5.2 Compliance Risks
| Risk | Scenario | Mitigation |
|----------------|--------------------------------------------------------------------------|-------------------------------------------|
| Spectrum Denial | ITU rejection of requested frequency bands | 1. Apply for backup bands (e.g., Ka band)<br>2. Participate in WRC-2027 spectrum negotiations |
| Data Cross-Border | GDPR violations in ground station data storage | 1. Localized data storage (Switzerland/Iceland)<br>2. Privacy-enhanced computation (PEP) |
### 5.3 Financial Risks
| Risk | Scenario | Mitigation |
|----------------|--------------------------------------------------------------------------|-------------------------------------------|
| Funding Shortfall| Insufficient community contributions | 1. Open corporate sponsorship (satellite naming rights)<br>2. Pre-sell node DIY kits |
| Cost Overrun | Radiation-hardened chip price fluctuations | 1. Fixed-price agreements with suppliers<br>2. Develop FPGA alternative solutions |
## 6. Community Engagement Plan
### 6.1 Open-Source Collaboration
- **Hardware Design**: All CAD drawings and BOM lists open-sourced on Gitea (CERN-OHL protocol), allowing third-party modification.
- Example: [https://git.openenet.cn/MoneroSpace/hardware-design/ms01-bom.xlsx](https://git.openenet.cn/MoneroSpace/hardware-design/ms01-bom.xlsx) (Draft for public review)
- **Protocol Development**: Laser communication code under MIT protocol, welcoming Pull Requests.
- Repository: [https://git.openenet.cn/MoneroSpace/laser-protocol](https://git.openenet.cn/MoneroSpace/laser-protocol) (Under development)
### 6.2 Incentive Mechanism
| Contribution Type | Reward | Application Channel |
|-------------------|------------------------------------------------------------------------|-----------------------------------|
| Code Submission | 0.1 XMR/valid line (core protocol), 0.05 XMR/valid line (tools) | Gitea Issue tagged #code-bounty |
| Hardware Modification | 0.05% transaction fee sharing after node deployment (compliance-reviewed) | Nextcloud form submission |
| Documentation Translation | 0.01 XMR/word (technical whitepaper), 0.005 XMR/word (user guide) | Email to translator@openenet.cn |
### 6.3 Transparency Assurance
- **Progress Tracking**: Real-time development status on Gitea kanban: [https://git.openenet.cn/MoneroSpace/kanban](https://git.openenet.cn/MoneroSpace/kanban)
- **Community Oversight**: Dedicated discussion forum (Monero Forum #OPENENET-MS01), weekly online Q&A sessions.
## 7. Proposer Information (Preparation Phase)
### 7.1 Current Status
- **Community Certification**: Applying for Monero Community Developer Certification (MCC), expected completion Q3 2025.
- **Collaboration Platforms**: Gitea/Nextcloud ready, welcome collaborator applications (send resumes to dev@openenet.cn).
- **Communication Channels**:
- Email: admin@openenet.cn
- Forum: [https://forum.getmonero.org/u/OPENENET-Tech](https://forum.getmonero.org/u/OPENENET-Tech) (Preparation-phase account)
## 8. Appendices (Upcoming Releases)
1. **Forthcoming Resources**
- 《Satellite Node Radiation-Hardened Design Whitepaper》 (Q4 2025)
- 《Laser Communication Protocol Technical Report》 (Q1 2026)
- 《ITU Spectrum Application Progress公示》 (Q2 2026)
2. **Existing Resources**
- Gitea Repository: [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace) (Hardware templates, protocol frameworks)
- Nextcloud Space: [https://cloud.openenet.cn/MoneroSpace](https://cloud.openenet.cn/MoneroSpace) (Collaboration access available upon request)
## 9. Conclusion
The MoneroSpace project focuses on **open-source collaboration** to fill the gap in Monero's physical-layer censorship resistance. Despite preparation-phase challenges, our transparent development process, community-driven incentives, and robust technical solutions aim to build a decentralized satellite communication infrastructure.
We welcome your support and participation in bringing censorship-resistant communication to the next dimension for the Monero network!
**Proposal expiration date: December 28, 2030 00:00 (UTC)**
**Proposer**: OPENENET Team
**Date**: April 13, 2025