ml-ai-agents-py/EBMs/test_inception.py

364 lines
12 KiB
Python

import os.path as osp
import random
import horovod.tensorflow as hvd
import numpy as np
import tensorflow as tf
from baselines.common.tf_util import initialize
from data import Cifar10, Imagenet, TFImagenetLoader
from fid import get_fid_score
from inception import get_inception_score
from models import ResNet32, ResNet32Large, ResNet32Larger, ResNet32Wider, ResNet128
from scipy.misc import imsave
from tensorflow.python.platform import flags
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import optimistic_remap_restore
hvd.init()
flags.DEFINE_string(
"logdir", "cachedir", "location where log of experiments will be stored"
)
flags.DEFINE_string("exp", "default", "name of experiments")
flags.DEFINE_bool("cclass", False, "whether to condition on class")
# Architecture settings
flags.DEFINE_bool("bn", False, "Whether to use batch normalization or not")
flags.DEFINE_bool("spec_norm", True, "Whether to use spectral normalization on weights")
flags.DEFINE_bool("use_bias", True, "Whether to use bias in convolution")
flags.DEFINE_bool("use_attention", False, "Whether to use self attention in network")
flags.DEFINE_float("step_lr", 10.0, "Size of steps for gradient descent")
flags.DEFINE_integer("num_steps", 20, "number of steps to optimize the label")
flags.DEFINE_float("proj_norm", 0.05, "Maximum change of input images")
flags.DEFINE_integer("batch_size", 512, "batch size")
flags.DEFINE_integer("resume_iter", -1, "resume iteration")
flags.DEFINE_integer("ensemble", 10, "number of ensembles")
flags.DEFINE_integer("im_number", 50000, "number of ensembles")
flags.DEFINE_integer("repeat_scale", 100, "number of repeat iterations")
flags.DEFINE_float("noise_scale", 0.005, "amount of noise to output")
flags.DEFINE_integer("idx", 0, "save index")
flags.DEFINE_integer("nomix", 10, "number of intervals to stop mixing")
flags.DEFINE_bool("scaled", True, "whether to scale noise added")
flags.DEFINE_bool("large_model", False, "whether to use a small or large model")
flags.DEFINE_bool("larger_model", False, "Whether to use a large model")
flags.DEFINE_bool("wider_model", False, "Whether to use a large model")
flags.DEFINE_bool("single", False, "single ")
flags.DEFINE_string("datasource", "random", "default or noise or negative or single")
flags.DEFINE_string("dataset", "cifar10", "cifar10 or imagenet or imagenetfull")
FLAGS = flags.FLAGS
class InceptionReplayBuffer(object):
def __init__(self, size):
"""Create Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
"""
self._storage = []
self._label_storage = []
self._maxsize = size
self._next_idx = 0
def __len__(self):
return len(self._storage)
def add(self, ims, labels):
batch_size = ims.shape[0]
if self._next_idx >= len(self._storage):
self._storage.extend(list(ims))
self._label_storage.extend(list(labels))
else:
if batch_size + self._next_idx < self._maxsize:
self._storage[self._next_idx : self._next_idx + batch_size] = list(ims)
self._label_storage[self._next_idx : self._next_idx + batch_size] = (
list(labels)
)
else:
split_idx = self._maxsize - self._next_idx
self._storage[self._next_idx :] = list(ims)[:split_idx]
self._storage[: batch_size - split_idx] = list(ims)[split_idx:]
self._label_storage[self._next_idx :] = list(labels)[:split_idx]
self._label_storage[: batch_size - split_idx] = list(labels)[split_idx:]
self._next_idx = (self._next_idx + ims.shape[0]) % self._maxsize
def _encode_sample(self, idxes):
ims = []
labels = []
for i in idxes:
ims.append(self._storage[i])
labels.append(self._label_storage[i])
return np.array(ims), np.array(labels)
def sample(self, batch_size):
"""Sample a batch of experiences.
Parameters
----------
batch_size: int
How many transitions to sample.
Returns
-------
obs_batch: np.array
batch of observations
act_batch: np.array
batch of actions executed given obs_batch
rew_batch: np.array
rewards received as results of executing act_batch
next_obs_batch: np.array
next set of observations seen after executing act_batch
done_mask: np.array
done_mask[i] = 1 if executing act_batch[i] resulted in
the end of an episode and 0 otherwise.
"""
idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)]
return self._encode_sample(idxes), idxes
def set_elms(self, idxes, data, labels):
for i, ix in enumerate(idxes):
self._storage[ix] = data[i]
self._label_storage[ix] = labels[i]
def rescale_im(im):
return np.clip(im * 256, 0, 255).astype(np.uint8)
def compute_inception(sess, target_vars):
X_START = target_vars["X_START"]
Y_GT = target_vars["Y_GT"]
X_finals = target_vars["X_finals"]
NOISE_SCALE = target_vars["NOISE_SCALE"]
energy_noise = target_vars["energy_noise"]
size = FLAGS.im_number
num_steps = size // 1000
images = []
test_ims = []
if FLAGS.dataset == "cifar10":
test_dataset = Cifar10(full=True, noise=False)
elif FLAGS.dataset == "imagenet" or FLAGS.dataset == "imagenetfull":
test_dataset = Imagenet(train=False)
if FLAGS.dataset != "imagenetfull":
test_dataloader = DataLoader(
test_dataset,
batch_size=FLAGS.batch_size,
num_workers=4,
shuffle=True,
drop_last=False,
)
else:
test_dataloader = TFImagenetLoader("test", FLAGS.batch_size, 0, 1)
for data_corrupt, data, label_gt in tqdm(test_dataloader):
data = data.numpy()
test_ims.extend(list(rescale_im(data)))
if FLAGS.dataset == "imagenetfull" and len(test_ims) > 60000:
test_ims = test_ims[:60000]
break
# n = min(len(images), len(test_ims))
print(len(test_ims))
# fid = get_fid_score(test_ims[:30000], test_ims[-30000:])
# print("Base FID of score {}".format(fid))
if FLAGS.dataset == "cifar10":
classes = 10
else:
classes = 1000
if FLAGS.dataset == "imagenetfull":
n = 128
else:
n = 32
for j in range(num_steps):
itr = int(1000 / 500 * FLAGS.repeat_scale)
data_buffer = InceptionReplayBuffer(1000)
curr_index = 0
identity = np.eye(classes)
for i in tqdm(range(itr)):
model_index = curr_index % len(X_finals)
x_final = X_finals[model_index]
noise_scale = [1]
if len(data_buffer) < 1000:
x_init = np.random.uniform(0, 1, (FLAGS.batch_size, n, n, 3))
label = np.random.randint(0, classes, (FLAGS.batch_size))
label = identity[label]
x_new = sess.run(
[x_final], {X_START: x_init, Y_GT: label, NOISE_SCALE: noise_scale}
)[0]
data_buffer.add(x_new, label)
else:
(x_init, label), idx = data_buffer.sample(FLAGS.batch_size)
keep_mask = np.random.uniform(0, 1, (FLAGS.batch_size)) > 0.99
label_keep_mask = np.random.uniform(0, 1, (FLAGS.batch_size)) > 0.9
label_corrupt = np.random.randint(0, classes, (FLAGS.batch_size))
label_corrupt = identity[label_corrupt]
x_init_corrupt = np.random.uniform(0, 1, (FLAGS.batch_size, n, n, 3))
if i < itr - FLAGS.nomix:
x_init[keep_mask] = x_init_corrupt[keep_mask]
label[label_keep_mask] = label_corrupt[label_keep_mask]
# else:
# noise_scale = [0.7]
x_new, e_noise = sess.run(
[x_final, energy_noise],
{X_START: x_init, Y_GT: label, NOISE_SCALE: noise_scale},
)
data_buffer.set_elms(idx, x_new, label)
if FLAGS.im_number != 50000:
print(np.mean(e_noise), np.std(e_noise))
curr_index += 1
ims = np.array(data_buffer._storage[:1000])
ims = rescale_im(ims)
images.extend(list(ims))
saveim = osp.join("sandbox_cachedir", FLAGS.exp, "test{}.png".format(FLAGS.idx))
ims = ims[:100]
if FLAGS.dataset != "imagenetfull":
im_panel = (
ims.reshape((10, 10, 32, 32, 3))
.transpose((0, 2, 1, 3, 4))
.reshape((320, 320, 3))
)
else:
im_panel = (
ims.reshape((10, 10, 128, 128, 3))
.transpose((0, 2, 1, 3, 4))
.reshape((1280, 1280, 3))
)
imsave(saveim, im_panel)
print("Saved image!!!!")
splits = max(1, len(images) // 5000)
score, std = get_inception_score(images, splits=splits)
print("Inception score of {} with std of {}".format(score, std))
# FID score
# n = min(len(images), len(test_ims))
fid = get_fid_score(images, test_ims)
print("FID of score {}".format(fid))
def main(model_list):
if FLAGS.dataset == "imagenetfull":
model = ResNet128(num_filters=64)
elif FLAGS.large_model:
model = ResNet32Large(num_filters=128)
elif FLAGS.larger_model:
model = ResNet32Larger(num_filters=hidden_dim)
elif FLAGS.wider_model:
model = ResNet32Wider(num_filters=256, train=False)
else:
model = ResNet32(num_filters=128)
# config = tf.ConfigProto()
sess = tf.InteractiveSession()
logdir = osp.join(FLAGS.logdir, FLAGS.exp)
weights = []
for i, model_num in enumerate(model_list):
weight = model.construct_weights("context_{}".format(i))
initialize()
save_file = osp.join(logdir, "model_{}".format(model_num))
v_list = tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope="context_{}".format(i)
)
v_map = {
(v.name.replace("context_{}".format(i), "context_0")[:-2]): v
for v in v_list
}
saver = tf.train.Saver(v_map)
try:
saver.restore(sess, save_file)
except BaseException:
optimistic_remap_restore(sess, save_file, i)
weights.append(weight)
if FLAGS.dataset == "imagenetfull":
X_START = tf.placeholder(shape=(None, 128, 128, 3), dtype=tf.float32)
else:
X_START = tf.placeholder(shape=(None, 32, 32, 3), dtype=tf.float32)
if FLAGS.dataset == "cifar10":
Y_GT = tf.placeholder(shape=(None, 10), dtype=tf.float32)
else:
Y_GT = tf.placeholder(shape=(None, 1000), dtype=tf.float32)
NOISE_SCALE = tf.placeholder(shape=1, dtype=tf.float32)
X_finals = []
# Seperate loops
for weight in weights:
X = X_START
steps = tf.constant(0)
def c(i, x):
return tf.less(i, FLAGS.num_steps)
def langevin_step(counter, X):
scale_rate = 1
X = X + tf.random_normal(
tf.shape(X),
mean=0.0,
stddev=scale_rate * FLAGS.noise_scale * NOISE_SCALE,
)
energy_noise = model.forward(X, weight, label=Y_GT, reuse=True)
x_grad = tf.gradients(energy_noise, [X])[0]
if FLAGS.proj_norm != 0.0:
x_grad = tf.clip_by_value(x_grad, -FLAGS.proj_norm, FLAGS.proj_norm)
X = X - FLAGS.step_lr * x_grad * scale_rate
X = tf.clip_by_value(X, 0, 1)
counter = counter + 1
return counter, X
steps, X = tf.while_loop(c, langevin_step, (steps, X))
energy_noise = model.forward(X, weight, label=Y_GT, reuse=True)
X_final = X
X_finals.append(X_final)
target_vars = {}
target_vars["X_START"] = X_START
target_vars["Y_GT"] = Y_GT
target_vars["X_finals"] = X_finals
target_vars["NOISE_SCALE"] = NOISE_SCALE
target_vars["energy_noise"] = energy_noise
compute_inception(sess, target_vars)
if __name__ == "__main__":
# model_list = [117000, 116700]
model_list = [FLAGS.resume_iter - 300 * i for i in range(FLAGS.ensemble)]
main(model_list)