ml-ai-agents-py/EBMs/inception.py

112 lines
3.7 KiB
Python

# Code derived from
# tensorflow/tensorflow/models/image/imagenet/classify_image.py
from __future__ import absolute_import, division, print_function
import math
import os.path
import sys
import tarfile
import horovod.tensorflow as hvd
import numpy as np
import tensorflow as tf
from six.moves import urllib
MODEL_DIR = "/tmp/imagenet"
DATA_URL = (
"http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz"
)
softmax = None
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())
sess = tf.Session(config=config)
# Call this function with list of images. Each of elements should be a
# numpy array with values ranging from 0 to 255.
def get_inception_score(images, splits=10):
# For convenience
if len(images[0].shape) != 3:
return 0, 0
# Bypassing all the assertions so that we don't end prematuraly'
# assert(type(images) == list)
# assert(type(images[0]) == np.ndarray)
# assert(len(images[0].shape) == 3)
# assert(np.max(images[0]) > 10)
# assert(np.min(images[0]) >= 0.0)
inps = []
for img in images:
img = img.astype(np.float32)
inps.append(np.expand_dims(img, 0))
bs = 1
preds = []
n_batches = int(math.ceil(float(len(inps)) / float(bs)))
for i in range(n_batches):
sys.stdout.write(".")
sys.stdout.flush()
inp = inps[(i * bs) : min((i + 1) * bs, len(inps))]
inp = np.concatenate(inp, 0)
pred = sess.run(softmax, {"ExpandDims:0": inp})
preds.append(pred)
preds = np.concatenate(preds, 0)
scores = []
for i in range(splits):
part = preds[
(i * preds.shape[0] // splits) : ((i + 1) * preds.shape[0] // splits), :
]
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
kl = np.mean(np.sum(kl, 1))
scores.append(np.exp(kl))
return np.mean(scores), np.std(scores)
# This function is called automatically.
def _init_inception():
global softmax
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
filename = DATA_URL.split("/")[-1]
filepath = os.path.join(MODEL_DIR, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write(
"\r>> Downloading %s %.1f%%"
% (filename, float(count * block_size) / float(total_size) * 100.0)
)
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print("Succesfully downloaded", filename, statinfo.st_size, "bytes.")
tarfile.open(filepath, "r:gz").extractall(MODEL_DIR)
with tf.gfile.FastGFile(
os.path.join(MODEL_DIR, "classify_image_graph_def.pb"), "rb"
) as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name="")
# Works with an arbitrary minibatch size.
pool3 = sess.graph.get_tensor_by_name("pool_3:0")
ops = pool3.graph.get_operations()
for op_idx, op in enumerate(ops):
for o in op.outputs:
shape = o.get_shape()
shape = [s.value for s in shape]
new_shape = []
for j, s in enumerate(shape):
if s == 1 and j == 0:
new_shape.append(None)
else:
new_shape.append(s)
o.set_shape(tf.TensorShape(new_shape))
w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w)
softmax = tf.nn.softmax(logits)
if softmax is None:
_init_inception()