ml-ai-agents-py/EBMs/test_inception.py
2024-11-17 17:45:23 -08:00

334 lines
12 KiB
Python

import tensorflow as tf
import numpy as np
from tensorflow.python.platform import flags
from models import ResNet32, ResNet32Large, ResNet32Larger, ResNet32Wider, ResNet128
import os.path as osp
import os
from utils import optimistic_restore, remap_restore, optimistic_remap_restore
from tqdm import tqdm
import random
from scipy.misc import imsave
from data import Cifar10, Svhn, Cifar100, Textures, Imagenet, TFImagenetLoader
from torch.utils.data import DataLoader
from baselines.common.tf_util import initialize
import horovod.tensorflow as hvd
hvd.init()
from inception import get_inception_score
from fid import get_fid_score
flags.DEFINE_string('logdir', 'cachedir', 'location where log of experiments will be stored')
flags.DEFINE_string('exp', 'default', 'name of experiments')
flags.DEFINE_bool('cclass', False, 'whether to condition on class')
# Architecture settings
flags.DEFINE_bool('bn', False, 'Whether to use batch normalization or not')
flags.DEFINE_bool('spec_norm', True, 'Whether to use spectral normalization on weights')
flags.DEFINE_bool('use_bias', True, 'Whether to use bias in convolution')
flags.DEFINE_bool('use_attention', False, 'Whether to use self attention in network')
flags.DEFINE_float('step_lr', 10.0, 'Size of steps for gradient descent')
flags.DEFINE_integer('num_steps', 20, 'number of steps to optimize the label')
flags.DEFINE_float('proj_norm', 0.05, 'Maximum change of input images')
flags.DEFINE_integer('batch_size', 512, 'batch size')
flags.DEFINE_integer('resume_iter', -1, 'resume iteration')
flags.DEFINE_integer('ensemble', 10, 'number of ensembles')
flags.DEFINE_integer('im_number', 50000, 'number of ensembles')
flags.DEFINE_integer('repeat_scale', 100, 'number of repeat iterations')
flags.DEFINE_float('noise_scale', 0.005, 'amount of noise to output')
flags.DEFINE_integer('idx', 0, 'save index')
flags.DEFINE_integer('nomix', 10, 'number of intervals to stop mixing')
flags.DEFINE_bool('scaled', True, 'whether to scale noise added')
flags.DEFINE_bool('large_model', False, 'whether to use a small or large model')
flags.DEFINE_bool('larger_model', False, 'Whether to use a large model')
flags.DEFINE_bool('wider_model', False, 'Whether to use a large model')
flags.DEFINE_bool('single', False, 'single ')
flags.DEFINE_string('datasource', 'random', 'default or noise or negative or single')
flags.DEFINE_string('dataset', 'cifar10', 'cifar10 or imagenet or imagenetfull')
FLAGS = flags.FLAGS
class InceptionReplayBuffer(object):
def __init__(self, size):
"""Create Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
"""
self._storage = []
self._label_storage = []
self._maxsize = size
self._next_idx = 0
def __len__(self):
return len(self._storage)
def add(self, ims, labels):
batch_size = ims.shape[0]
if self._next_idx >= len(self._storage):
self._storage.extend(list(ims))
self._label_storage.extend(list(labels))
else:
if batch_size + self._next_idx < self._maxsize:
self._storage[self._next_idx:self._next_idx+batch_size] = list(ims)
self._label_storage[self._next_idx:self._next_idx+batch_size] = list(labels)
else:
split_idx = self._maxsize - self._next_idx
self._storage[self._next_idx:] = list(ims)[:split_idx]
self._storage[:batch_size-split_idx] = list(ims)[split_idx:]
self._label_storage[self._next_idx:] = list(labels)[:split_idx]
self._label_storage[:batch_size-split_idx] = list(labels)[split_idx:]
self._next_idx = (self._next_idx + ims.shape[0]) % self._maxsize
def _encode_sample(self, idxes):
ims = []
labels = []
for i in idxes:
ims.append(self._storage[i])
labels.append(self._label_storage[i])
return np.array(ims), np.array(labels)
def sample(self, batch_size):
"""Sample a batch of experiences.
Parameters
----------
batch_size: int
How many transitions to sample.
Returns
-------
obs_batch: np.array
batch of observations
act_batch: np.array
batch of actions executed given obs_batch
rew_batch: np.array
rewards received as results of executing act_batch
next_obs_batch: np.array
next set of observations seen after executing act_batch
done_mask: np.array
done_mask[i] = 1 if executing act_batch[i] resulted in
the end of an episode and 0 otherwise.
"""
idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)]
return self._encode_sample(idxes), idxes
def set_elms(self, idxes, data, labels):
for i, ix in enumerate(idxes):
self._storage[ix] = data[i]
self._label_storage[ix] = labels[i]
def rescale_im(im):
return np.clip(im * 256, 0, 255).astype(np.uint8)
def compute_inception(sess, target_vars):
X_START = target_vars['X_START']
Y_GT = target_vars['Y_GT']
X_finals = target_vars['X_finals']
NOISE_SCALE = target_vars['NOISE_SCALE']
energy_noise = target_vars['energy_noise']
size = FLAGS.im_number
num_steps = size // 1000
images = []
test_ims = []
if FLAGS.dataset == "cifar10":
test_dataset = Cifar10(full=True, noise=False)
elif FLAGS.dataset == "imagenet" or FLAGS.dataset == "imagenetfull":
test_dataset = Imagenet(train=False)
if FLAGS.dataset != "imagenetfull":
test_dataloader = DataLoader(test_dataset, batch_size=FLAGS.batch_size, num_workers=4, shuffle=True, drop_last=False)
else:
test_dataloader = TFImagenetLoader('test', FLAGS.batch_size, 0, 1)
for data_corrupt, data, label_gt in tqdm(test_dataloader):
data = data.numpy()
test_ims.extend(list(rescale_im(data)))
if FLAGS.dataset == "imagenetfull" and len(test_ims) > 60000:
test_ims = test_ims[:60000]
break
# n = min(len(images), len(test_ims))
print(len(test_ims))
# fid = get_fid_score(test_ims[:30000], test_ims[-30000:])
# print("Base FID of score {}".format(fid))
if FLAGS.dataset == "cifar10":
classes = 10
else:
classes = 1000
if FLAGS.dataset == "imagenetfull":
n = 128
else:
n = 32
for j in range(num_steps):
itr = int(1000 / 500 * FLAGS.repeat_scale)
data_buffer = InceptionReplayBuffer(1000)
curr_index = 0
identity = np.eye(classes)
for i in tqdm(range(itr)):
model_index = curr_index % len(X_finals)
x_final = X_finals[model_index]
noise_scale = [1]
if len(data_buffer) < 1000:
x_init = np.random.uniform(0, 1, (FLAGS.batch_size, n, n, 3))
label = np.random.randint(0, classes, (FLAGS.batch_size))
label = identity[label]
x_new = sess.run([x_final], {X_START:x_init, Y_GT:label, NOISE_SCALE: noise_scale})[0]
data_buffer.add(x_new, label)
else:
(x_init, label), idx = data_buffer.sample(FLAGS.batch_size)
keep_mask = (np.random.uniform(0, 1, (FLAGS.batch_size)) > 0.99)
label_keep_mask = (np.random.uniform(0, 1, (FLAGS.batch_size)) > 0.9)
label_corrupt = np.random.randint(0, classes, (FLAGS.batch_size))
label_corrupt = identity[label_corrupt]
x_init_corrupt = np.random.uniform(0, 1, (FLAGS.batch_size, n, n, 3))
if i < itr - FLAGS.nomix:
x_init[keep_mask] = x_init_corrupt[keep_mask]
label[label_keep_mask] = label_corrupt[label_keep_mask]
# else:
# noise_scale = [0.7]
x_new, e_noise = sess.run([x_final, energy_noise], {X_START:x_init, Y_GT:label, NOISE_SCALE: noise_scale})
data_buffer.set_elms(idx, x_new, label)
if FLAGS.im_number != 50000:
print(np.mean(e_noise), np.std(e_noise))
curr_index += 1
ims = np.array(data_buffer._storage[:1000])
ims = rescale_im(ims)
images.extend(list(ims))
saveim = osp.join('sandbox_cachedir', FLAGS.exp, "test{}.png".format(FLAGS.idx))
ims = ims[:100]
if FLAGS.dataset != "imagenetfull":
im_panel = ims.reshape((10, 10, 32, 32, 3)).transpose((0, 2, 1, 3, 4)).reshape((320, 320, 3))
else:
im_panel = ims.reshape((10, 10, 128, 128, 3)).transpose((0, 2, 1, 3, 4)).reshape((1280, 1280, 3))
imsave(saveim, im_panel)
print("Saved image!!!!")
splits = max(1, len(images) // 5000)
score, std = get_inception_score(images, splits=splits)
print("Inception score of {} with std of {}".format(score, std))
# FID score
# n = min(len(images), len(test_ims))
fid = get_fid_score(images, test_ims)
print("FID of score {}".format(fid))
def main(model_list):
if FLAGS.dataset == "imagenetfull":
model = ResNet128(num_filters=64)
elif FLAGS.large_model:
model = ResNet32Large(num_filters=128)
elif FLAGS.larger_model:
model = ResNet32Larger(num_filters=hidden_dim)
elif FLAGS.wider_model:
model = ResNet32Wider(num_filters=256, train=False)
else:
model = ResNet32(num_filters=128)
# config = tf.ConfigProto()
sess = tf.InteractiveSession()
logdir = osp.join(FLAGS.logdir, FLAGS.exp)
weights = []
for i, model_num in enumerate(model_list):
weight = model.construct_weights('context_{}'.format(i))
initialize()
save_file = osp.join(logdir, 'model_{}'.format(model_num))
v_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='context_{}'.format(i))
v_map = {(v.name.replace('context_{}'.format(i), 'context_0')[:-2]): v for v in v_list}
saver = tf.train.Saver(v_map)
try:
saver.restore(sess, save_file)
except:
optimistic_remap_restore(sess, save_file, i)
weights.append(weight)
if FLAGS.dataset == "imagenetfull":
X_START = tf.placeholder(shape=(None, 128, 128, 3), dtype = tf.float32)
else:
X_START = tf.placeholder(shape=(None, 32, 32, 3), dtype = tf.float32)
if FLAGS.dataset == "cifar10":
Y_GT = tf.placeholder(shape=(None, 10), dtype = tf.float32)
else:
Y_GT = tf.placeholder(shape=(None, 1000), dtype = tf.float32)
NOISE_SCALE = tf.placeholder(shape=1, dtype=tf.float32)
X_finals = []
# Seperate loops
for weight in weights:
X = X_START
steps = tf.constant(0)
c = lambda i, x: tf.less(i, FLAGS.num_steps)
def langevin_step(counter, X):
scale_rate = 1
X = X + tf.random_normal(tf.shape(X), mean=0.0, stddev=scale_rate * FLAGS.noise_scale * NOISE_SCALE)
energy_noise = model.forward(X, weight, label=Y_GT, reuse=True)
x_grad = tf.gradients(energy_noise, [X])[0]
if FLAGS.proj_norm != 0.0:
x_grad = tf.clip_by_value(x_grad, -FLAGS.proj_norm, FLAGS.proj_norm)
X = X - FLAGS.step_lr * x_grad * scale_rate
X = tf.clip_by_value(X, 0, 1)
counter = counter + 1
return counter, X
steps, X = tf.while_loop(c, langevin_step, (steps, X))
energy_noise = model.forward(X, weight, label=Y_GT, reuse=True)
X_final = X
X_finals.append(X_final)
target_vars = {}
target_vars['X_START'] = X_START
target_vars['Y_GT'] = Y_GT
target_vars['X_finals'] = X_finals
target_vars['NOISE_SCALE'] = NOISE_SCALE
target_vars['energy_noise'] = energy_noise
compute_inception(sess, target_vars)
if __name__ == "__main__":
# model_list = [117000, 116700]
model_list = [FLAGS.resume_iter - 300*i for i in range(FLAGS.ensemble)]
main(model_list)