mirror of
https://github.com/autistic-symposium/ml-ai-agents-py.git
synced 2025-04-25 10:09:09 -04:00
106 lines
3.5 KiB
Python
106 lines
3.5 KiB
Python
# Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os.path
|
|
import sys
|
|
import tarfile
|
|
|
|
import numpy as np
|
|
from six.moves import urllib
|
|
import tensorflow as tf
|
|
import glob
|
|
import scipy.misc
|
|
import math
|
|
import sys
|
|
|
|
import horovod.tensorflow as hvd
|
|
|
|
MODEL_DIR = '/tmp/imagenet'
|
|
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
|
|
softmax = None
|
|
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.visible_device_list = str(hvd.local_rank())
|
|
sess = tf.Session(config=config)
|
|
|
|
# Call this function with list of images. Each of elements should be a
|
|
# numpy array with values ranging from 0 to 255.
|
|
def get_inception_score(images, splits=10):
|
|
# For convenience
|
|
if len(images[0].shape) != 3:
|
|
return 0, 0
|
|
|
|
# Bypassing all the assertions so that we don't end prematuraly'
|
|
# assert(type(images) == list)
|
|
# assert(type(images[0]) == np.ndarray)
|
|
# assert(len(images[0].shape) == 3)
|
|
# assert(np.max(images[0]) > 10)
|
|
# assert(np.min(images[0]) >= 0.0)
|
|
inps = []
|
|
for img in images:
|
|
img = img.astype(np.float32)
|
|
inps.append(np.expand_dims(img, 0))
|
|
bs = 1
|
|
preds = []
|
|
n_batches = int(math.ceil(float(len(inps)) / float(bs)))
|
|
for i in range(n_batches):
|
|
sys.stdout.write(".")
|
|
sys.stdout.flush()
|
|
inp = inps[(i * bs):min((i + 1) * bs, len(inps))]
|
|
inp = np.concatenate(inp, 0)
|
|
pred = sess.run(softmax, {'ExpandDims:0': inp})
|
|
preds.append(pred)
|
|
preds = np.concatenate(preds, 0)
|
|
scores = []
|
|
for i in range(splits):
|
|
part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :]
|
|
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
|
|
kl = np.mean(np.sum(kl, 1))
|
|
scores.append(np.exp(kl))
|
|
return np.mean(scores), np.std(scores)
|
|
|
|
# This function is called automatically.
|
|
def _init_inception():
|
|
global softmax
|
|
if not os.path.exists(MODEL_DIR):
|
|
os.makedirs(MODEL_DIR)
|
|
filename = DATA_URL.split('/')[-1]
|
|
filepath = os.path.join(MODEL_DIR, filename)
|
|
if not os.path.exists(filepath):
|
|
def _progress(count, block_size, total_size):
|
|
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
|
|
filename, float(count * block_size) / float(total_size) * 100.0))
|
|
sys.stdout.flush()
|
|
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
|
|
print()
|
|
statinfo = os.stat(filepath)
|
|
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
|
|
tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
|
|
with tf.gfile.FastGFile(os.path.join(
|
|
MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
|
|
graph_def = tf.GraphDef()
|
|
graph_def.ParseFromString(f.read())
|
|
_ = tf.import_graph_def(graph_def, name='')
|
|
# Works with an arbitrary minibatch size.
|
|
pool3 = sess.graph.get_tensor_by_name('pool_3:0')
|
|
ops = pool3.graph.get_operations()
|
|
for op_idx, op in enumerate(ops):
|
|
for o in op.outputs:
|
|
shape = o.get_shape()
|
|
shape = [s.value for s in shape]
|
|
new_shape = []
|
|
for j, s in enumerate(shape):
|
|
if s == 1 and j == 0:
|
|
new_shape.append(None)
|
|
else:
|
|
new_shape.append(s)
|
|
o.set_shape(tf.TensorShape(new_shape))
|
|
w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
|
|
logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w)
|
|
softmax = tf.nn.softmax(logits)
|
|
|
|
if softmax is None:
|
|
_init_inception()
|