# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Image pre-processing utilities.
"""
import tensorflow as tf


IMAGE_DEPTH = 3 # color images

import tensorflow as tf

# _R_MEAN = 123.68
# _G_MEAN = 116.78
# _B_MEAN = 103.94
# _CHANNEL_MEANS = [_R_MEAN, _G_MEAN, _B_MEAN]
_CHANNEL_MEANS = [0.0, 0.0, 0.0]

# The lower bound for the smallest side of the image for aspect-preserving
# resizing. For example, if an image is 500 x 1000, it will be resized to
# _RESIZE_MIN x (_RESIZE_MIN * 2).
_RESIZE_MIN = 128


def _decode_crop_and_flip(image_buffer, bbox, num_channels):
  """Crops the given image to a random part of the image, and randomly flips.

  We use the fused decode_and_crop op, which performs better than the two ops
  used separately in series, but note that this requires that the image be
  passed in as an un-decoded string Tensor.

  Args:
    image_buffer: scalar string Tensor representing the raw JPEG image buffer.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
    num_channels: Integer depth of the image buffer for decoding.

  Returns:
    3-D tensor with cropped image.

  """
  # A large fraction of image datasets contain a human-annotated bounding box
  # delineating the region of the image containing the object of interest.  We
  # choose to create a new bounding box for the object which is a randomly
  # distorted version of the human-annotated bounding box that obeys an
  # allowed range of aspect ratios, sizes and overlap with the human-annotated
  # bounding box. If no box is supplied, then we assume the bounding box is
  # the entire image.
  sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
      tf.image.extract_jpeg_shape(image_buffer),
      bounding_boxes=bbox,
      min_object_covered=0.1,
      aspect_ratio_range=[0.75, 1.33],
      area_range=[0.05, 1.0],
      max_attempts=100,
      use_image_if_no_bounding_boxes=True)
  bbox_begin, bbox_size, _ = sample_distorted_bounding_box

  # Reassemble the bounding box in the format the crop op requires.
  offset_y, offset_x, _ = tf.unstack(bbox_begin)
  target_height, target_width, _ = tf.unstack(bbox_size)
  crop_window = tf.stack([offset_y, offset_x, target_height, target_width])

  # Use the fused decode and crop op here, which is faster than each in series.
  cropped = tf.image.decode_and_crop_jpeg(
      image_buffer, crop_window, channels=num_channels)

  # Flip to add a little more random distortion in.
  cropped = tf.image.random_flip_left_right(cropped)
  return cropped


def _central_crop(image, crop_height, crop_width):
  """Performs central crops of the given image list.

  Args:
    image: a 3-D image tensor
    crop_height: the height of the image following the crop.
    crop_width: the width of the image following the crop.

  Returns:
    3-D tensor with cropped image.
  """
  shape = tf.shape(input=image)
  height, width = shape[0], shape[1]

  amount_to_be_cropped_h = (height - crop_height)
  crop_top = amount_to_be_cropped_h // 2
  amount_to_be_cropped_w = (width - crop_width)
  crop_left = amount_to_be_cropped_w // 2
  return tf.slice(
      image, [crop_top, crop_left, 0], [crop_height, crop_width, -1])


def _mean_image_subtraction(image, means, num_channels):
  """Subtracts the given means from each image channel.

  For example:
    means = [123.68, 116.779, 103.939]
    image = _mean_image_subtraction(image, means)

  Note that the rank of `image` must be known.

  Args:
    image: a tensor of size [height, width, C].
    means: a C-vector of values to subtract from each channel.
    num_channels: number of color channels in the image that will be distorted.

  Returns:
    the centered image.

  Raises:
    ValueError: If the rank of `image` is unknown, if `image` has a rank other
      than three or if the number of channels in `image` doesn't match the
      number of values in `means`.
  """
  if image.get_shape().ndims != 3:
    raise ValueError('Input must be of size [height, width, C>0]')

  if len(means) != num_channels:
    raise ValueError('len(means) must match the number of channels')

  # We have a 1-D tensor of means; convert to 3-D.
  means = tf.expand_dims(tf.expand_dims(means, 0), 0)

  return image - means


def _smallest_size_at_least(height, width, resize_min):
  """Computes new shape with the smallest side equal to `smallest_side`.

  Computes new shape with the smallest side equal to `smallest_side` while
  preserving the original aspect ratio.

  Args:
    height: an int32 scalar tensor indicating the current height.
    width: an int32 scalar tensor indicating the current width.
    resize_min: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.

  Returns:
    new_height: an int32 scalar tensor indicating the new height.
    new_width: an int32 scalar tensor indicating the new width.
  """
  resize_min = tf.cast(resize_min, tf.float32)

  # Convert to floats to make subsequent calculations go smoothly.
  height, width = tf.cast(height, tf.float32), tf.cast(width, tf.float32)

  smaller_dim = tf.minimum(height, width)
  scale_ratio = resize_min / smaller_dim

  # Convert back to ints to make heights and widths that TF ops will accept.
  new_height = tf.cast(tf.ceil(height * scale_ratio), tf.int32)
  new_width = tf.cast(tf.ceil(width * scale_ratio), tf.int32)

  return new_height, new_width


def _aspect_preserving_resize(image, resize_min):
  """Resize images preserving the original aspect ratio.

  Args:
    image: A 3-D image `Tensor`.
    resize_min: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.

  Returns:
    resized_image: A 3-D tensor containing the resized image.
  """
  shape = tf.shape(input=image)
  height, width = shape[0], shape[1]

  new_height, new_width = _smallest_size_at_least(height, width, resize_min)

  return _resize_image(image, new_height, new_width)


def _resize_image(image, height, width):
  """Simple wrapper around tf.resize_images.

  This is primarily to make sure we use the same `ResizeMethod` and other
  details each time.

  Args:
    image: A 3-D image `Tensor`.
    height: The target height for the resized image.
    width: The target width for the resized image.

  Returns:
    resized_image: A 3-D tensor containing the resized image. The first two
      dimensions have the shape [height, width].
  """
  return tf.image.resize_images(
      image, [height, width], method=tf.image.ResizeMethod.BILINEAR,
      align_corners=False)


def preprocess_image(image_buffer, bbox, output_height, output_width,
                     num_channels, is_training=False):
  """Preprocesses the given image.

  Preprocessing includes decoding, cropping, and resizing for both training
  and eval images. Training preprocessing, however, introduces some random
  distortion of the image to improve accuracy.

  Args:
    image_buffer: scalar string Tensor representing the raw JPEG image buffer.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    num_channels: Integer depth of the image buffer for decoding.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.

  Returns:
    A preprocessed image.
  """
  if is_training:
    # For training, we want to randomize some of the distortions.
    image = _decode_crop_and_flip(image_buffer, bbox, num_channels)
    image = _resize_image(image, output_height, output_width)
  else:
    # For validation, we want to decode, resize, then just crop the middle.
    image = tf.image.decode_jpeg(image_buffer, channels=num_channels)
    image = _aspect_preserving_resize(image, _RESIZE_MIN)
    print(image)
    image = _central_crop(image, output_height, output_width)

  image.set_shape([output_height, output_width, num_channels])

  return _mean_image_subtraction(image, _CHANNEL_MEANS, num_channels)


def parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields:

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
    text: Tensor tf.string containing the human-readable label.
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
  }
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})

  features = tf.parse_single_example(example_serialized, feature_map)
  label = tf.cast(features['image/class/label'], dtype=tf.int32)

  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox, features['image/class/text']


class ImagenetPreprocessor:
  def __init__(self, image_size, dtype, train):
    self.image_size = image_size
    self.dtype = dtype
    self.train = train

  def preprocess(self, image_buffer, bbox):
    # pylint: disable=g-import-not-at-top
    image = preprocess_image(image_buffer, bbox, self.image_size, self.image_size, IMAGE_DEPTH, is_training=self.train)
    return tf.cast(image, self.dtype)

  def parse_and_preprocess(self, value):
    image_buffer, label_index, bbox, _ = parse_example_proto(value)
    image = self.preprocess(image_buffer, bbox)
    image = tf.reshape(image, [self.image_size, self.image_size, IMAGE_DEPTH])
    return label_index, image