from models import ResNet128 import numpy as np import os.path as osp from tensorflow.python.platform import flags import tensorflow as tf import imageio from utils import optimistic_restore flags.DEFINE_string('logdir', 'cachedir', 'location where log of experiments will be stored') flags.DEFINE_integer('num_steps', 200, 'num of steps for conditional imagenet sampling') flags.DEFINE_float('step_lr', 180., 'step size for Langevin dynamics') flags.DEFINE_integer('batch_size', 16, 'number of steps to run') flags.DEFINE_string('exp', 'default', 'name of experiments') flags.DEFINE_integer('resume_iter', -1, 'iteration to resume training from') flags.DEFINE_bool('spec_norm', True, 'whether to use spectral normalization in weights in a model') flags.DEFINE_bool('cclass', True, 'conditional models') flags.DEFINE_bool('use_attention', False, 'using attention') FLAGS = flags.FLAGS def rescale_im(im): return np.clip(im * 256, 0, 255).astype(np.uint8) if __name__ == "__main__": model = ResNet128(num_filters=64) X_NOISE = tf.placeholder(shape=(None, 128, 128, 3), dtype=tf.float32) LABEL = tf.placeholder(shape=(None, 1000), dtype=tf.float32) sess = tf.InteractiveSession() weights = model.construct_weights("context_0") x_mod = X_NOISE x_mod = x_mod + tf.random_normal(tf.shape(x_mod), mean=0.0, stddev=0.005) energy_noise = energy_start = model.forward(x_mod, weights, label=LABEL, reuse=True, stop_at_grad=False, stop_batch=True) x_grad = tf.gradients(energy_noise, [x_mod])[0] energy_noise_old = energy_noise lr = FLAGS.step_lr x_last = x_mod - (lr) * x_grad x_mod = x_last x_mod = tf.clip_by_value(x_mod, 0, 1) x_output = x_mod sess.run(tf.global_variables_initializer()) saver = loader = tf.train.Saver() logdir = osp.join(FLAGS.logdir, FLAGS.exp) model_file = osp.join(logdir, 'model_{}'.format(FLAGS.resume_iter)) saver.restore(sess, model_file) lx = np.random.permutation(1000)[:16] ims = [] # What to initialize sampling with. x_mod = np.random.uniform(0, 1, size=(FLAGS.batch_size, 128, 128, 3)) labels = np.eye(1000)[lx] for i in range(FLAGS.num_steps): e, x_mod = sess.run([energy_noise, x_output], {X_NOISE:x_mod, LABEL:labels}) ims.append(rescale_im(x_mod).reshape((4, 4, 128, 128, 3)).transpose((0, 2, 1, 3, 4)).reshape((512, 512, 3))) imageio.mimwrite('sample.gif', ims)