#!/usr/bin/env python3 ''' Calculates the Frechet Inception Distance (FID) to evalulate GANs. The FID metric calculates the distance between two distributions of images. Typically, we have summary statistics (mean & covariance matrix) of one of these distributions, while the 2nd distribution is given by a GAN. When run as a stand-alone program, it compares the distribution of images that are stored as PNG/JPEG at a specified location with a distribution given by summary statistics (in pickle format). The FID is calculated by assuming that X_1 and X_2 are the activations of the pool_3 layer of the inception net for generated samples and real world samples respectivly. See --help to see further details. ''' from __future__ import absolute_import, division, print_function import numpy as np import os import gzip, pickle import tensorflow as tf from scipy.misc import imread from scipy import linalg import pathlib import urllib import tarfile import warnings MODEL_DIR = '/tmp/imagenet' DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' pool3 = None class InvalidFIDException(Exception): pass #------------------------------------------------------------------------------- def get_fid_score(images, images_gt): images = np.stack(images, 0) images_gt = np.stack(images_gt, 0) with tf.Session() as sess: m1, s1 = calculate_activation_statistics(images, sess) m2, s2 = calculate_activation_statistics(images_gt, sess) fid_value = calculate_frechet_distance(m1, s1, m2, s2) print("Obtained fid value of {}".format(fid_value)) return fid_value def create_inception_graph(pth): """Creates a graph from saved GraphDef file.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile( pth, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString( f.read()) _ = tf.import_graph_def( graph_def, name='FID_Inception_Net') #------------------------------------------------------------------------------- # code for handling inception net derived from # https://github.com/openai/improved-gan/blob/master/inception_score/model.py def _get_inception_layer(sess): """Prepares inception net for batched usage and returns pool_3 layer. """ layername = 'FID_Inception_Net/pool_3:0' pool3 = sess.graph.get_tensor_by_name(layername) ops = pool3.graph.get_operations() for op_idx, op in enumerate(ops): for o in op.outputs: shape = o.get_shape() if shape._dims != []: shape = [s.value for s in shape] new_shape = [] for j, s in enumerate(shape): if s == 1 and j == 0: new_shape.append(None) else: new_shape.append(s) o.__dict__['_shape_val'] = tf.TensorShape(new_shape) return pool3 #------------------------------------------------------------------------------- def get_activations(images, sess, batch_size=50, verbose=False): """Calculates the activations of the pool_3 layer for all images. Params: -- images : Numpy array of dimension (n_images, hi, wi, 3). The values must lie between 0 and 256. -- sess : current session -- batch_size : the images numpy array is split into batches with batch size batch_size. A reasonable batch size depends on the disposable hardware. -- verbose : If set to True and parameter out_step is given, the number of calculated batches is reported. Returns: -- A numpy array of dimension (num images, 2048) that contains the activations of the given tensor when feeding inception with the query tensor. """ # inception_layer = _get_inception_layer(sess) d0 = images.shape[0] if batch_size > d0: print("warning: batch size is bigger than the data size. setting batch size to data size") batch_size = d0 n_batches = d0//batch_size n_used_imgs = n_batches*batch_size pred_arr = np.empty((n_used_imgs,2048)) for i in range(n_batches): if verbose: print("\rPropagating batch %d/%d" % (i+1, n_batches), end="", flush=True) start = i*batch_size end = start + batch_size batch = images[start:end] pred = sess.run(pool3, {'ExpandDims:0': batch}) pred_arr[start:end] = pred.reshape(batch_size,-1) if verbose: print(" done") return pred_arr #------------------------------------------------------------------------------- def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of the pool_3 layer of the inception net ( like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations of the pool_3 layer, precalcualted on an representive data set. -- sigma1: The covariance matrix over activations of the pool_3 layer for generated samples. -- sigma2: The covariance matrix over activations of the pool_3 layer, precalcualted on an representive data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths" assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions" diff = mu1 - mu2 # product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = "fid calculation produces singular product; adding %s to diagonal of cov estimates" % eps warnings.warn(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError("Imaginary component {}".format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean #------------------------------------------------------------------------------- def calculate_activation_statistics(images, sess, batch_size=50, verbose=False): """Calculation of the statistics used by the FID. Params: -- images : Numpy array of dimension (n_images, hi, wi, 3). The values must lie between 0 and 255. -- sess : current session -- batch_size : the images numpy array is split into batches with batch size batch_size. A reasonable batch size depends on the available hardware. -- verbose : If set to True and parameter out_step is given, the number of calculated batches is reported. Returns: -- mu : The mean over samples of the activations of the pool_3 layer of the incption model. -- sigma : The covariance matrix of the activations of the pool_3 layer of the incption model. """ act = get_activations(images, sess, batch_size, verbose) mu = np.mean(act, axis=0) sigma = np.cov(act, rowvar=False) return mu, sigma #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # The following functions aren't needed for calculating the FID # they're just here to make this module work as a stand-alone script # for calculating FID scores #------------------------------------------------------------------------------- def check_or_download_inception(inception_path): ''' Checks if the path to the inception file is valid, or downloads the file if it is not present. ''' INCEPTION_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' if inception_path is None: inception_path = '/tmp' inception_path = pathlib.Path(inception_path) model_file = inception_path / 'classify_image_graph_def.pb' if not model_file.exists(): print("Downloading Inception model") from urllib import request import tarfile fn, _ = request.urlretrieve(INCEPTION_URL) with tarfile.open(fn, mode='r') as f: f.extract('classify_image_graph_def.pb', str(model_file.parent)) return str(model_file) def _handle_path(path, sess): if path.endswith('.npz'): f = np.load(path) m, s = f['mu'][:], f['sigma'][:] f.close() else: path = pathlib.Path(path) files = list(path.glob('*.jpg')) + list(path.glob('*.png')) x = np.array([imread(str(fn)).astype(np.float32) for fn in files]) m, s = calculate_activation_statistics(x, sess) return m, s def calculate_fid_given_paths(paths, inception_path): ''' Calculates the FID of two paths. ''' inception_path = check_or_download_inception(inception_path) for p in paths: if not os.path.exists(p): raise RuntimeError("Invalid path: %s" % p) create_inception_graph(str(inception_path)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) m1, s1 = _handle_path(paths[0], sess) m2, s2 = _handle_path(paths[1], sess) fid_value = calculate_frechet_distance(m1, s1, m2, s2) return fid_value def _init_inception(): global pool3 if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) filename = DATA_URL.split('/')[-1] filepath = os.path.join(MODEL_DIR, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR) with tf.gfile.FastGFile(os.path.join( MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') # Works with an arbitrary minibatch size. with tf.Session() as sess: pool3 = sess.graph.get_tensor_by_name('pool_3:0') ops = pool3.graph.get_operations() for op_idx, op in enumerate(ops): for o in op.outputs: shape = o.get_shape() if shape._dims != []: shape = [s.value for s in shape] new_shape = [] for j, s in enumerate(shape): if s == 1 and j == 0: new_shape.append(None) else: new_shape.append(s) o.__dict__['_shape_val'] = tf.TensorShape(new_shape) if pool3 is None: _init_inception()