mirror of
https://github.com/autistic-symposium/ml-ai-agents-py.git
synced 2025-08-18 19:17:55 -04:00
Clean up to start add modern models (#24)
This commit is contained in:
parent
94d09f6fba
commit
3f8821f1d4
34 changed files with 845 additions and 309 deletions
194
README.md
194
README.md
|
@ -1,185 +1,43 @@
|
|||
# Training EMBs using OpenAI's resources
|
||||
## deep learning projects, code, resources
|
||||
|
||||
<br>
|
||||
|
||||
This repository contains an adapted code for [OpenAI's Implicit Generation and Generalization in Energy Based Models](https://arxiv.org/pdf/1903.08689.pdf).
|
||||
### chapters
|
||||
|
||||
## Installing locally
|
||||
<br>
|
||||
|
||||
### Install the system's requirement
|
||||
#### learnings
|
||||
|
||||
```bash
|
||||
brew install gcc@6
|
||||
brew install open-mpi
|
||||
brew install pkg-config
|
||||
```
|
||||
* **[deep learning](agents/deep_learning.md)**
|
||||
* **[reinforcement learning](agents/reinforcement_learning.md)**
|
||||
* **[strategy workflow](agents/strategy_workflow)**
|
||||
|
||||
<br>
|
||||
|
||||
There is a [bug](https://github.com/open-mpi/ompi/issues/7516) in open-mpi for the specific libraries in this problem (`PMIX ERROR: ERROR`) that can be fixed with:
|
||||
#### quantum computing and machine learning
|
||||
|
||||
```
|
||||
export PMIX_MCA_gds=^ds12
|
||||
```
|
||||
* **[energy-based models](EBMs)**: my adaptation of openai's implicit generation and generalization in energy based models
|
||||
|
||||
<br>
|
||||
|
||||
### Install requirements.txt
|
||||
#### large language models
|
||||
|
||||
Install Python's requirements in a virtual environment:
|
||||
|
||||
```bash
|
||||
virtualenv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Note that this is an adapted requirement file since the [OpenAI's original](https://github.com/openai/ebm_code_release/blob/master/requirements.txt) is not complete/correct.
|
||||
|
||||
### Install MuJoCo
|
||||
|
||||
Download and install [MuJoCo](https://www.roboti.us/index.html).
|
||||
|
||||
You will also need to register for a license, which asks for a machine ID. The documentation on the website is incomplete, so just download the suggested script and run:
|
||||
|
||||
```bash
|
||||
mv getid_osx getid_osx.dms
|
||||
./getid_osx.dms
|
||||
```
|
||||
|
||||
### Download pre-trained models (exmples)
|
||||
|
||||
Download all [pre-trained models](https://sites.google.com/view/igebm/home) and unzip into a local folder `cachedir`:
|
||||
|
||||
```bash
|
||||
mkdir cachedir
|
||||
```
|
||||
|
||||
### Setting results directory
|
||||
|
||||
OpenAI's original code contains [hardcoded constants that only work on Linux](https://github.com/openai/ebm_code_release/blob/master/data.py#L218). We changed this to a constant (`ROOT_DIR = "./results"`) in the top of `data.py`.
|
||||
* **[gpt](GPT)**
|
||||
* **[claude](claude)**
|
||||
|
||||
<br>
|
||||
|
||||
----
|
||||
|
||||
## Running
|
||||
### cool resources
|
||||
|
||||
### Parallelization with `mpiexec`
|
||||
<br>
|
||||
|
||||
All code supports [`horovod` execution](https://github.com/horovod/horovod), so model training can be increased substantially by using multiple different workers by running each command.
|
||||
```
|
||||
mpiexec -n <worker_num> <command>
|
||||
```
|
||||
|
||||
### Examples of Training on example datasets
|
||||
|
||||
#### CIFAR-10 Unconditional:
|
||||
|
||||
```
|
||||
python train.py --exp=cifar10_uncond --dataset=cifar10 --num_steps=60 --batch_size=128 --step_lr=10.0 --proj_norm=0.01 --zero_kl --replay_batch --large_model
|
||||
```
|
||||
|
||||
This should generate the following output:
|
||||
|
||||
```bash
|
||||
Instructions for updating:
|
||||
Use tf.gfile.GFile.
|
||||
2020-05-10 22:12:32.471415: W tensorflow/core/framework/op_def_util.cc:355] Op BatchNormWithGlobalNormalization is deprecated. It will cease to work in GraphDef version 9. Use tf.nn.batch_normalization().
|
||||
64 batch size
|
||||
Local rank: 0 1
|
||||
Loading data...
|
||||
Files already downloaded and verified
|
||||
Files already downloaded and verified
|
||||
Files already downloaded and verified
|
||||
Files already downloaded and verified
|
||||
Done loading...
|
||||
WARNING:tensorflow:From /Users/mia/dev/ebm_code_release/venv/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
|
||||
Instructions for updating:
|
||||
Colocations handled automatically by placer.
|
||||
Building graph...
|
||||
WARNING:tensorflow:From /Users/mia/dev/ebm_code_release/venv/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
|
||||
Instructions for updating:
|
||||
Use tf.cast instead.
|
||||
Finished processing loop construction ...
|
||||
Started gradient computation...
|
||||
Applying gradients...
|
||||
Finished applying gradients.
|
||||
Model has a total of 7567880 parameters
|
||||
Initializing variables...
|
||||
Start broadcast
|
||||
End broadcast
|
||||
Obtained a total of e_pos: -0.0025530937127768993, e_pos_std: 0.09564747661352158, e_neg: -0.22276005148887634, e_diff: 0.22020696103572845, e_neg_std: 0.016306934878230095, temp: 1, loss_e: -0.22276005148887634, eps: 0.0, label_ent: 2.272536277770996, l
|
||||
oss_ml: 0.22020693123340607, loss_total: 0.2792498469352722, x_grad: 0.0009156676824204624, x_grad_first: 0.0009156676824204624, x_off: 0.31731340289115906, iter: 0, gamma: [0.], context_0/c1_pre/cweight:0: 0.0731438547372818, context_0/res_optim_res_c1/
|
||||
cweight:0: 4.732660444095593e-11, context_0/res_optim_res_c1/gb:0: 3.4007335836250263e-10, context_0/res_optim_res_c2/cweight:0: 0.9494612216949463, context_0/res_optim_res_c2/g:0: 1.8536269741353806e-10, context_0/res_optim_res_c2/gb:0: 6.27235652306268
|
||||
3e-10, context_0/res_optim_res_c2/cb:0: 1.1606662297936055e-09, context_0/res_1_res_c1/cweight:0: 6.714453298917178e-11, context_0/res_1_res_c1/gb:0: 3.6198691266697836e-10, context_0/res_1_res_c2/cweight:0: 0.6582950353622437, context_0/res_1_res_c2/g:0
|
||||
: 1.669797633496728e-10, context_0/res_1_res_c2/gb:0: 5.911696687732615e-10, context_0/res_1_res_c2/cb:0: 1.1932842491901852e-09, context_0/res_2_res_c1/cweight:0: 8.567072745657711e-11, context_0/res_2_res_c1/gb:0: 6.868505764145993e-10, context_0/res_2
|
||||
_res_c2/cweight:0: 0.46929678320884705, context_0/res_2_res_c2/g:0: 1.655784120924153e-10, context_0/res_2_res_c2/gb:0: 8.058526068666083e-10, context_0/res_2_res_c2/cb:0: 1.0161046448686761e-09, context_0/res_2_res_adaptive/cweight:0: 0.0194275379180908
|
||||
2, context_0/res_3_res_c1/cweight:0: 4.011655244107182e-11, context_0/res_3_res_c1/gb:0: 5.064903496609929e-10, context_0/res_3_res_c2/cweight:0: 0.32239994406700134, context_0/res_3_res_c2/g:0: 9.758494012857e-11, context_0/res_3_res_c2/gb:0: 7.75612463
|
||||
1441708e-10, context_0/res_3_res_c2/cb:0: 6.362700366580043e-10, context_0/res_4_res_c1/cweight:0: 4.090133440270982e-11, context_0/res_4_res_c1/gb:0: 6.013010089844784e-10, context_0/res_4_res_c2/cweight:0: 0.34806951880455017, context_0/res_4_res_c2/g:
|
||||
0: 8.414659247168998e-11, context_0/res_4_res_c2/gb:0: 6.443054978433338e-10, context_0/res_4_res_c2/cb:0: 5.496815780325903e-10, context_0/res_5_res_c1/cweight:0: 3.990113794927197e-11, context_0/res_5_res_c1/gb:0: 3.807749116013781e-10, context_0/res_5
|
||||
_res_c2/cweight:0: 0.22841960191726685, context_0/res_5_res_c2/g:0: 4.942361797599659e-11, context_0/res_5_res_c2/gb:0: 7.697342763179904e-10, context_0/res_5_res_c2/cb:0: 3.1796060229183354e-10, context_0/fc5/wweight:0: 3.081033706665039, context_0/fc5/
|
||||
b:0: 0.4506262540817261,
|
||||
|
||||
................................................................................................................................
|
||||
Inception score of 1.2397289276123047 with std of 0.0
|
||||
```
|
||||
|
||||
|
||||
#### CIFAR-10 Conditional:
|
||||
|
||||
```
|
||||
python train.py --exp=cifar10_cond --dataset=cifar10 --num_steps=60 --batch_size=128 --step_lr=10.0 --proj_norm=0.01 --zero_kl --replay_batch --cclass
|
||||
```
|
||||
|
||||
|
||||
|
||||
#### ImageNet 32x32 Conditional:
|
||||
|
||||
```
|
||||
python train.py --exp=imagenet_cond --num_steps=60 --wider_model --batch_size=32 step_lr=10.0 --proj_norm=0.01 --replay_batch --cclass --zero_kl --dataset=imagenet --imagenet_path=<imagenet32x32 path>
|
||||
```
|
||||
|
||||
#### ImageNet 128x128 Conditional:
|
||||
|
||||
```
|
||||
python train.py --exp=imagenet_cond --num_steps=50 --batch_size=16 step_lr=100.0 --replay_batch --swish_act --cclass --zero_kl --dataset=imagenetfull --imagenet_datadir=<full imagenet path>
|
||||
```
|
||||
|
||||
#### Imagenet Demo
|
||||
|
||||
The imagenet_demo.py file contains code to experiments with EBMs on conditional ImageNet 128x128. To generate a gif on sampling, you can run the command:
|
||||
|
||||
```
|
||||
python imagenet_demo.py --exp=imagenet128_cond --resume_iter=2238000 --swish_act
|
||||
```
|
||||
|
||||
The ebm_sandbox.py file contains several different tasks that can be used to evaluate EBMs, which are defined by different settings of task flag in the file. For example, to visualize cross class mappings in CIFAR-10, you can run:
|
||||
|
||||
```
|
||||
python ebm_sandbox.py --task=crossclass --num_steps=40 --exp=cifar10_cond --resume_iter=74700
|
||||
```
|
||||
|
||||
|
||||
#### Generalization
|
||||
|
||||
To test generalization to out of distribution classification for SVHN (with similar commands for other datasets)
|
||||
```
|
||||
python ebm_sandbox.py --task=mixenergy --num_steps=40 --exp=cifar10_large_model_uncond --resume_iter=121200 --large_model --svhnmix --cclass=False
|
||||
```
|
||||
|
||||
To test classification on CIFAR-10 using a conditional model under either L2 or Li perturbations
|
||||
```
|
||||
python ebm_sandbox.py --task=label --exp=cifar10_wider_model_cond --resume_iter=21600 --lnorm=-1 --pgd=<number of pgd steps> --num_steps=10 --lival=<li bound value> --wider_model
|
||||
```
|
||||
|
||||
|
||||
#### Concept Combination
|
||||
|
||||
To train EBMs on conditional dSprites dataset, you can train each model seperately on each conditioned latent in cond_pos, cond_rot, cond_shape, cond_scale, with an example command given below.
|
||||
|
||||
```
|
||||
python train.py --dataset=dsprites --exp=dsprites_cond_pos --zero_kl --num_steps=20 --step_lr=500.0 --swish_act --cond_pos --replay_batch -cclass
|
||||
```
|
||||
|
||||
Once models are trained, they can be sampled from jointly by running:
|
||||
|
||||
```
|
||||
python ebm_combine.py --task=conceptcombine --exp_size=<exp_size> --exp_shape=<exp_shape> --exp_pos=<exp_pos> --exp_rot=<exp_rot> --resume_size=<resume_size> --resume_shape=<resume_shape> --resume_rot=<resume_rot> --resume_pos=<resume_pos>
|
||||
```
|
||||
* **[cursor ai editor](https://www.cursor.com/)**
|
||||
* **[microsoft notes on ai agents](https://github.com/microsoft/generative-ai-for-beginners/tree/main/17-ai-agents)**
|
||||
* **[ritual.net, integrate ai models into protocols](https://ritual.net/)**
|
||||
* **[the promise and challenges of crypto + ai applications, by vub](https://vitalik.eth.limo/general/2024/01/30/cryptoai.html)**
|
||||
* **[on training defi agents with markov chains, by bt3gl](https://mirror.xyz/go-outside.eth/DKaWYobU7q3EvZw8x01J7uEmF_E8PfNN27j0VgxQhNQ)**
|
||||
* **[google's jax (composable transformations of numpy programs)](https://github.com/google/jax)**
|
||||
* **[machine learning engineering open book](https://github.com/stas00/ml-engineering)**
|
||||
* **[advances in financial machine learning](books/advances_in_financial_machine_learning.pdf)**
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue