Clean up to start add modern models (#24)

This commit is contained in:
autistic-symposium-helper 2024-11-17 17:45:23 -08:00 committed by GitHub
parent 94d09f6fba
commit 3f8821f1d4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
34 changed files with 845 additions and 309 deletions

105
EBMs/inception.py Normal file
View file

@ -0,0 +1,105 @@
# Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
import glob
import scipy.misc
import math
import sys
import horovod.tensorflow as hvd
MODEL_DIR = '/tmp/imagenet'
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
softmax = None
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())
sess = tf.Session(config=config)
# Call this function with list of images. Each of elements should be a
# numpy array with values ranging from 0 to 255.
def get_inception_score(images, splits=10):
# For convenience
if len(images[0].shape) != 3:
return 0, 0
# Bypassing all the assertions so that we don't end prematuraly'
# assert(type(images) == list)
# assert(type(images[0]) == np.ndarray)
# assert(len(images[0].shape) == 3)
# assert(np.max(images[0]) > 10)
# assert(np.min(images[0]) >= 0.0)
inps = []
for img in images:
img = img.astype(np.float32)
inps.append(np.expand_dims(img, 0))
bs = 1
preds = []
n_batches = int(math.ceil(float(len(inps)) / float(bs)))
for i in range(n_batches):
sys.stdout.write(".")
sys.stdout.flush()
inp = inps[(i * bs):min((i + 1) * bs, len(inps))]
inp = np.concatenate(inp, 0)
pred = sess.run(softmax, {'ExpandDims:0': inp})
preds.append(pred)
preds = np.concatenate(preds, 0)
scores = []
for i in range(splits):
part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :]
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
kl = np.mean(np.sum(kl, 1))
scores.append(np.exp(kl))
return np.mean(scores), np.std(scores)
# This function is called automatically.
def _init_inception():
global softmax
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(MODEL_DIR, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
with tf.gfile.FastGFile(os.path.join(
MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
# Works with an arbitrary minibatch size.
pool3 = sess.graph.get_tensor_by_name('pool_3:0')
ops = pool3.graph.get_operations()
for op_idx, op in enumerate(ops):
for o in op.outputs:
shape = o.get_shape()
shape = [s.value for s in shape]
new_shape = []
for j, s in enumerate(shape):
if s == 1 and j == 0:
new_shape.append(None)
else:
new_shape.append(s)
o.set_shape(tf.TensorShape(new_shape))
w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w)
softmax = tf.nn.softmax(logits)
if softmax is None:
_init_inception()