2023-08-07 18:06:54 -07:00
..
👾
2023-07-30 21:40:09 -07:00
👾
2023-07-30 21:40:09 -07:00
2023-08-07 18:04:47 -07:00

queues


  • queues are first in, first out (FIFO) abstract structures (i.e., items are removed at the same order they are added) that can be implemented with two arrays or a dynamic array (linked list), as long as items are added and removed from opposite sides.

  • queues support enqueue (add to the end one end) and dequeue (remove from the other end, or tail).

  • if implemented with a dynamic array, a more efficient solution is to use a circular queue (ring buffer), i.e., a fixed-size array and two pointers to indicate the starting and ending positions.

    • an advantage of circular queues is that we can use the spaces in front of the queue.
    • in a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. but using the circular queue, we can use the space to store new values.
  • queues are often used in breath-first search (where you store a list of nodes to be processed) or when implementing a cache.



designing a circular queue


  • a circular queue can be built with either arrays or linked lists (nodes).

using arrays


  • to build a ring with a fixed size array, any of the elements could be considered as the head.

  • as long as we know the length of the queue, we can instantly locat its tails based on this formula:

tail_index = (head_index + queue_length - 1) % queue_capacity

class CircularQueue:

    def __init__(self, k: int):
        self.head = 0
        self.tail = 0
        self.size = k
        self.queue = [None] * self.size
        
    def enqueue(self, value: int) -> bool:

        if value is None:
            return False
            
        if self.is_full():
            return False

        if self.is_empty():
            self.heard = 0
        
        while self.queue[self.tail] is not None:
            self.tail += 1 
            if self.tail == self.size:
                self.tail = 0
    
        self.queue[self.tail] = value
        return True

    def dequeue(self) -> bool:

        if self.is_empty():
            return False

        value = self.queue[self.head]
        self.queue[self.head] = None
        self.head += 1

        if self.head == self.size:
            self.head = 0

        return True

    def front(self) -> int:
        return self.queue[self.head] or -1
        
    def rear(self) -> int:
        return self.queue[self.tail] or -1
        
    def is_empty(self) -> bool:
        for n in self.queue:
            if n is not None:
                return False
        return True

    def is_full(self) -> bool:
        for n in self.queue:
            if n is None:
                return False
        return True

using linked lists


  • note that this queue is not thread-safe: the data structure could be corrupted in a multi-threaded environment (as race-condition could occur). to mitigate this problem, one could add the protection of a lock.

 class CircularQueue:

    def __init__(self, k: int):
        self.head = -1
        self.tail = -1
        self.size = k
        self.queue = [None] * self.size
        
    def _get_next_position(self, end) -> int:
        return (end + 1) % self.size
        
    def enqueue(self, value: int) -> bool:
        if self.is_full():
            return False

        if self.is_empty() :
            self.head = 0;
        
        self.tail = self._get_next_position(self.tail)
        self.queue[self.tail] = value
        return True

    def dequeue(self) -> bool:
        if self.is_empty():
            return False

        if self.head == self.tail:
            self.head = -1
            self.tail = -1
            return True
        
        self.head = self._get_next_position(self.head)
        return True

    def front(self) -> int:
        if self.is_empty():
            return -1
        return self.queue[self.head]
        
    def rear(self) -> int:
        if self.is_empty():
            return -1
        return self.queue[self.tail]
        
    def is_empty(self) -> bool:
        return self.head == -1

    def is_full(self) -> bool:
        return self._get_next_position(self.tail) == self.head