Mia Steinkirch a8e71c50db reorganize dir
Signed-off-by: Mia Steinkirch <mia.steinkirch@gmail.com>
2019-10-11 04:29:17 -07:00

45 lines
1.3 KiB
Python

#!/usr/bin/python3
# mari von steinkirch @2013
# steinkirch at gmail
'''
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
'''
def find_sum_proper_divisors(n):
sum_proper_div = 0
for i in range(1, n):
if n%i == 0:
sum_proper_div += i
return sum_proper_div
def amicable_numbers(N):
sum_div_list = [find_sum_proper_divisors(i) for i in range(1, N+1)]
sum_amicable_numbers = 0
set_div = set()
for a in range(1, N):
da = sum_div_list[a-1]
if da < N:
b = da
db = sum_div_list[b-1]
if a != b and db == a and a not in set_div and b not in set_div:
sum_amicable_numbers += a + b
set_div.add(a)
set_div.add(b)
return sum_amicable_numbers
def main():
print(amicable_numbers(10000))
print('Tests Passed!')
if __name__ == '__main__':
main()