
♥ Python & Algorithms 2.0 ♥
A Guide to Learn how to Fly

Marina Wahl
marina.w4hl@gmail.com

August 20, 2014

“There’s nothing to fear but the fear itself.
That’s called recursion, and that would lead you to

infinite fear.”

Hello, human! Welcome to the second edition of my book on (flying with)

Python. This new revision was written during my (amazing) time at Hacker

School. It contains some improvements and some updates. You might notice

a great difference in the last chapters, about graphs and trees. Hope you

enjoy and have fun!

Marina, Hacker School, NYC

Summer/2014

Hello, human! Welcome to my book on Python and algorithms! If you are

reading this you probably agree with me that those two can be a lot of fun

together (or you might be lost, and in this case I suggest you give it a

try anyway!). Also, many of the examples shown here are available in my

git repository, together with several other (more advanced) examples for

abstract data structures, trees, graphs, and solutions for the Euler

Project and the Topcoder website. Dont forget to check them out!

This text was written purely for fun (I know, I know, this is a broad

definition of the word fun...) with no pretensions for anything big, so

please forgive me (or better, let me know) if you find any typo or

mistake. I am not a computer scientist by formation (I am actually an

almost-I-swear-it-is-close-Ph.D. in Physics) so this maybe makes things a

little less usual (or risky?). I hope you have fun!

Marina, Stony Brook, NY

Summer/2013

4

Contents

I Get your wings! Python is a general-purpose,
high-level programming language, which supports mul-
tiple programming paradigms, including object-oriented,
imperative and functional programming or procedu-
ral styles. In the first part of this book, we will learn
all these fancy words. 9

1 Oh Hay, Numbers! 11

1.1 Integers . 11

1.2 Floats . 12

1.3 Complex Numbers . 14

1.4 The fraction Module . 14

1.5 The decimal Module . 15

1.6 Other Representations . 16

1.7 Doing Some Math . 16

1.8 The NumPy Package . 23

2 Built-in Sequence Types 27

2.1 Strings . 29

2.2 Tuples . 35

2.3 Lists . 38

2.4 Bytes and Byte Arrays . 46

3 Collection Data Structures 49

3.1 Sets . 49

3.2 Dictionaries . 53

3.3 Python’s collection Data Types 59

3.4 Further Examples . 63

5

6 CONTENTS

4 Python’s Structure and Modules 69
4.1 Modules in Python . 69
4.2 Control Flow . 73
4.3 File Handling . 79
4.4 Error Handling in Python . 86

5 Object-Oriented Design 89
5.1 Classes and Objects . 90
5.2 Principles of OOP . 91
5.3 Python Design Patterns . 94
5.4 Additional Exercises . 97

6 Advanced Topics 101
6.1 Multiprocessing and Threading 101
6.2 Good Practices . 103
6.3 Unit Testing . 107

II Algorithms are Fun! It’s time to add some sauce
into our flight! In this second part we will learn how
to make the computer become our awesome space-
ship! 111

7 Abstract Data Structures 113
7.1 Stacks . 113
7.2 Queues . 116
7.3 Deques . 121
7.4 Priority Queues and Heaps . 123
7.5 Linked Lists . 128
7.6 Additional Exercises . 134

8 Asymptotic Analysis 147
8.1 Complexity Classes . 147
8.2 Recursion . 149
8.3 Runtime in Functions . 150

9 Sorting 153
9.1 Quadratic Sort . 153
9.2 Linear Sort . 156

CONTENTS 7

9.3 Loglinear Sort . 157
9.4 Comparison Between Sorting Methods 163
9.5 Additional Exercises . 164

10 Searching 167
10.1 Sequential Search . 167
10.2 Binary Search . 169
10.3 Additional Exercises . 171

11 Dynamic Programming 177
11.1 Memoization . 177
11.2 Additional Exercises . 179

III Climbing is so last week! I would rather fly,
wouldn’t you? Time to start our engines to reach
the most fun objects in the algorithm world. Speed
up to beautiful Graphs and Trees! 183

12 Introduction to Graphs 185
12.1 Basic Definitions . 185
12.2 The Neighborhood Function 187
12.3 Introduction to Trees . 190

13 Binary Trees 195
13.1 Basic Concepts . 195
13.2 Representing Binary Trees . 195
13.3 Binary Search Trees . 199
13.4 Self-Balancing BST . 203
13.5 Additional Exercises . 211

14 Traversals and Problems on Graphs and Trees 225
14.1 Depth-First Search . 225
14.2 Breadth-First Search . 227
14.3 Representing Tree Traversals 227
14.4 Additional Exercises . 230

8 CONTENTS

Part I

Get your wings! Python is a
general-purpose, high-level

programming language, which
supports multiple programming

paradigms, including
object-oriented, imperative and

functional programming or
procedural styles. In the first

part of this book, we will learn
all these fancy words.

9

Chapter 1

Oh Hay, Numbers!

When you learn a new language, the first thing you usually do is scream
Hello World! Because we all need to be noticed. The second thing we do is
check if the math makes sense, playing around with numbers and arithmetic
operations. Numbers can be integers, float, or complex. Because humans
have 10 fingers, we have learned to represent numbers as decimals. Com-
puters, however, are much more Hamletian. Binary believers have a point:
why waste all these bytes if we can just state that either things are (True)
or they are not (False)? In addition, since computers care about equality
for extraterrestrial beings, they also let you represent things in other basis
such as hexadecimal and octal.

1.1 Integers

Python represents integers (positive and negative whole numbers) using the
int (immutable) type. For immutable objects, there is no difference between
a variable and an object reference.

The size of Python’s integers is limited only by the machine memory, not
by a fixed number of bytes (the range depends on the C or Java compiler
that Python was built with). Usually plain integers are at least 32-bit long (4
bytes)1.To see how many bytes an integer needs to be represented, starting
in Python 3.1, the int.bit length() method is available:

1To have an idea of how much this means: 1K of disk memory has 1024 × 8 bits = 210

bytes.

11

12 CHAPTER 1. OH HAY, NUMBERS!

>>> (999).bit_length()

10

To cast a string to an integer (in some base) or to change the base of an
integer, we use int(s, base):

>>> s = ’11’

>>> d = int(s)

>>> print(d)

11

>>> b = int(s, 2)

>>> print(b)

3

The optional base argument must be an integer between 2 and 36 (inclu-
sive). If the string cannot be represented as the integer in the chosen base,
this method raises a ValueError exception. For example, this will happen
if we try to obtain a binary representation with s=‘12’.

1.2 Floats

Numbers with a fractional part are represented by the (immutable) type
float. When we use single precision, a 32-bit float is represented by: 1 bit
for sign (negative being 1, positive being 0) + 23 bits for the significant
digits (or mantissa) + 8 bits for the exponent. When we use double
precision, the mantissa has 53 bits instead. Also, the exponent is usually
represented using the biased notation, where you add the number 127 to the
original value2.

Comparing Floats

We should never compare floats for equality nor subtract them. The reason
for this is that floats are represented in binary fractions. There are several
numbers that are exact in a decimal base but not exact in a binary base (for

2Biasing is done because exponents have to be signed values to be able to represent
tiny and huge values, but the usual representation makes comparison harder. To solve this
problem, the exponent is adjusted to be within an unsigned range suitable for comparison.
Learn more: http://www.doc.ic.ac.uk/ eedwards/compsys/float

http://www.doc.ic.ac.uk/~eedwards/compsys/float

1.2. FLOATS 13

example, the decimal 0.1). Equality tests should instead be done in terms of
some predefined precision. For example, we could employ the same approach
as the Python’s unittest module: assert AlmostEqual:

>>> def a(x , y, places=7):

... return round(abs(x-y), places) == 0

Float numbers can also be compared by their bit patterns in memory.
First we need to handle sign comparison separately: if both numbers are
negative, we may compare them by flipping their signs, returning the opposite
answer. Patterns with the same exponent are compared according to their
mantissa.

Methods for Floats and Integers

In Python, the division operator / always returns a float. A floor division
(truncation) is made with the operator //. A module (remainder) operation
is given by the operator %. In addition, the method divmod(x,y) returns
both the quotient and remainder when dividing x by y:

>>> divmod(45,6)

(7, 3)

The method round(x, n) returns x rounded to n integral digits if n is a
negative int or returns x rounded to n decimal places if n is a positive int.
The returned value has the same type as x:

>>> round(100.96,-2)

100.0

>>> round(100.96,2)

100.96

The method as integer ratio() gives the integer fractional representa-
tion of a float:

>>> 2.75.as_integer_ratio()

(11, 4)

14 CHAPTER 1. OH HAY, NUMBERS!

1.3 Complex Numbers

The complex data type is an (immutable) type that holds a pair of floats:
z = 3 + 4j. It has methods such as: z.real, z.imag, and z.conjugate().

Complex numbers are imported from the cmath module, which provides
complex number versions of most of the trigonometric and logarithmic func-
tions that are in the math module, plus some complex number-specific func-
tions such as: cmath.phase(), cmath.polar(), cmath.rect(), cmath.pi,
and cmath.e.

1.4 The fraction Module

Python has the fraction module to deal with parts of a fraction. The
following snippet shows the basics methods of this module:3

[general_problems/numbers/testing_floats.py]

from fractions import Fraction

def rounding_floats(number1, places):

’’’ some operations with float()’’’

return round(number1, places)

def float_to_fractions(number):

return Fraction(*number.as_integer_ratio())

def get_denominator(number1, number2):

a = Fraction(number1, number2)

return a.denominator

def get_numerator(number1, number2):

a = Fraction(number1, number2)

return a.numerator

3All of the codes shown in this book are in the designed directory structure in the git
repository: https://github.com/mariwahl/Python-and-Algorithms-and-Data-Structures.
Note that the PEP 8 (Python Enhancement Proposal) guidelines recommend four spaces
per level of indentation, and only spaces (no tabs). This is not evident here because of
the way Latex formats the text.

https://github.com/mariwahl/Python-and-Algorithms-and-Data-Structures

1.5. THE DECIMAL MODULE 15

def test_testing_floats(module_name=’this module’):

number1 = 1.25

number2 = 1

number3 = -1

number4 = 5/4

number6 = 6

assert(rounding_floats(number1, number2) == 1.2)

assert(rounding_floats(number1*10, number3) == 10)

assert(float_to_fractions(number1) == number4)

assert(get_denominator(number2, number6) == number6)

assert(get_numerator(number2, number6) == number2)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_testing_floats()

1.5 The decimal Module

In the cases when we need exact decimal floating-point numbers, Python
includes an additional (immutable) float type, the decimal.Decimal. The
method takes an integer or a string as the argument (and starting from
Python 3.1, also floats, with the decimal.Decimal.from float() function).
This an efficient alternative when we do not want to deal with the rounding,
equality, and subtraction problems that floats come with:

>>> sum (0.1 for i in range(10)) == 1.0

False

>>> from decimal import Decimal

>>> sum (Decimal ("0.1") for i in range(10)) == Decimal("1.0")

True

While the math and cmath modules are not suitable for the decimal

module, its built-in functions, such as decimal.Decimal.exp(x), are enough
to most of the cases.

16 CHAPTER 1. OH HAY, NUMBERS!

1.6 Other Representations

The bin(i) method returns the binary representation of the int i as a
string:

>>> bin(999)

’0b1111100111’

The hex(i) method returns the hexadecimal representation of i as a
string:

>>> hex(999)

’0x3e7’

The oct(i) method returns the octal representation of i as a string:

>>> oct(999)

’0o1747’

1.7 Doing Some Math

Converting Between Different Bases

We can write our own functions to change bases in numbers. The snippet
bellow converts a number in any base smaller than 10 to the decimal base:

[general_problems/numbers/convert_to_decimal.py]

def convert_to_decimal(number, base):

multiplier, result = 1, 0

while number > 0:

result += number%10*multiplier

multiplier *= base

number = number//10

return result

def test_convert_to_decimal():

number, base = 1001, 2

assert(convert_to_decimal(number, base) == 9)

print(’Tests passed!’)

1.7. DOING SOME MATH 17

if __name__ == ’__main__’:

test_convert_to_decimal()

By swapping all the occurrences of 10 with any other base in our previous
example, we can create a function that converts from a decimal number to
another number (2 ≤ base ≤ 10):

[general_problems/numbers/convert_from_decimal.py]

def convert_from_decimal(number, base):

multiplier, result = 1, 0

while number > 0:

result += number%base*multiplier

multiplier *= 10

number = number//base

return result

def test_convert_from_decimal():

number, base = 9, 2

assert(convert_from_decimal(number, base) == 1001)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_convert_from_decimal()

If the base is above 10 then we must use non-numeric characters to rep-
resent larger digits. We can let ‘A’ stand for 10, ‘B’ stand for 11 and so on.
The following code will convert a number from a decimal base to any other
base (up to 20):

[general_problems/numbers/convert_from_decimal_larger_bases.py]

def convert_from_decimal_larger_bases(number, base):

strings = "0123456789ABCDEFGHIJ"

result = ""

while number > 0:

digit = number%base

result = strings[digit] + result

number = number//base

18 CHAPTER 1. OH HAY, NUMBERS!

return result

def test_convert_from_decimal_larger_bases():

number, base = 31, 16

assert(convert_from_decimal_larger_bases(number, base) == ’1F’)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_convert_from_decimal_larger_bases()

Finally, the snippet bellow is a very general base-conversion module, using
a recursive method:

[general_problems/numbers/convert_dec_to_any_base_rec.py]

def convert_dec_to_any_base_rec(number, base):

’’’ convert an integer to a string in any base’’’

convertString = ’012345679ABCDEF’

if number < base: return convertString[number]

else:

return convert_dec_to_any_base_rec(number//base, base) +

convertString[number%base]

def test_convert_dec_to_any_base_rec(module_name=’this module’):

number = 9

base = 2

assert(convert_dec_to_any_base_rec(number, base) == ’1001’)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_convert_dec_to_any_base_rec()

Greatest Common Divisor

The following module calculates the greatest common divisor (gcd) between
two given integers:

1.7. DOING SOME MATH 19

[general_problems/numbers/finding_gcd.py]

def finding_gcd(a, b):

’’’ implements the greatest common divider algorithm ’’’

while(b != 0):

result = b

a, b = b, a % b

return result

def test_finding_gcd():

number1 = 21

number2 = 12

assert(finding_gcd(number1, number2) == 3)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_finding_gcd()

The Random Module

The follow snippet runs some tests on the Python’s random module:

[general_problems/numbers/testing_random.py]

import random

def testing_random():

’’’ testing the module random’’’

values = [1, 2, 3, 4]

print(random.choice(values))

print(random.choice(values))

print(random.choice(values))

print(random.sample(values, 2))

print(random.sample(values, 3))

’’’ shuffle in place ’’’

random.shuffle(values)

20 CHAPTER 1. OH HAY, NUMBERS!

print(values)

’’’ create random integers ’’’

print(random.randint(0,10))

print(random.randint(0,10))

if __name__ == ’__main__’:

testing_random()

Fibonacci Sequences

The module bellow shows how to find the nth number in a Fibonacci sequence
in three different ways: (a) with a recursive O(2n) runtime; (b) with a itera-
tive O(n2) runtime; and (c) using a formula that gives a O(1) runtime (but
that is not precise after around the 70th element):

[general_problems/numbers/find_fibonacci_seq.py]

import math

def find_fibonacci_seq_rec(n):

if n < 2: return n

return find_fibonacci_seq_rec(n - 1) + find_fibonacci_seq_rec(n

- 2)

def find_fibonacci_seq_iter(n):

if n < 2: return n

a, b = 0, 1

for i in range(n):

a, b = b, a + b

return a

def find_fibonacci_seq_form(n):

sq5 = math.sqrt(5)

phi = (1 + sq5) / 2

return int(math.floor(phi ** n / sq5))

1.7. DOING SOME MATH 21

def test_find_fib():

n = 10

assert(find_fibonacci_seq_rec(n) == 55)

assert(find_fibonacci_seq_iter(n) == 55)

assert(find_fibonacci_seq_form(n) == 55)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_find_fib()

Primes

The following program finds whether a number is a prime in three different
ways: (a) using brute force; (b) rejecting all the candidates up to the square
root of the number; and (c) using the Fermat’s theorem with probabilistic
tests:

[general_problems/numbers/finding_if_prime.py]

import math

import random

def finding_prime(number):

num = abs(number)

if num < 4 : return True

for x in range(2, num):

if num % x == 0:

return False

return True

def finding_prime_sqrt(number):

num = abs(number)

if num < 4 : return True

for x in range(2, int(math.sqrt(num)) + 1):

if number % x == 0:

return False

return True

22 CHAPTER 1. OH HAY, NUMBERS!

def finding_prime_fermat(number):

if number <= 102:

for a in range(2, number):

if pow(a, number- 1, number) != 1:

return False

return True

else:

for i in range(100):

a = random.randint(2, number - 1)

if pow(a, number - 1, number) != 1:

return False

return True

def test_finding_prime():

number1 = 17

number2 = 20

assert(finding_prime(number1) == True)

assert(finding_prime(number2) == False)

assert(finding_prime_sqrt(number1) == True)

assert(finding_prime_sqrt(number2) == False)

assert(finding_prime_fermat(number1) == True)

assert(finding_prime_fermat(number2) == False)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_finding_prime()

The following program uses Python’s random module to generate n-bit
prime numbers:

[general_problems/numbers/generate_prime.py]

import math

import random

import sys

from finding_prime import finding_prime_sqrt

def generate_prime(number=3):

1.8. THE NUMPY PACKAGE 23

while 1:

p = random.randint(pow(2, number-2), pow(2, number-1)-1)

p = 2 * p + 1

if finding_prime_sqrt(p):

return p

if __name__ == ’__main__’:

if len(sys.argv) < 2:

print ("Usage: generate_prime.py number")

sys.exit()

else:

number = int(sys.argv[1])

print(generate_prime(number))

1.8 The NumPy Package

The NumPy package4 is an extension to the Python programming language,
adding support for large, multi-dimensional arrays and matrices, along with a
large library of high-level mathematical functions to operate on these arrays.

Arrays in NumPy can have any arbitrary dimension. They can be gener-
ated from a list or a tuple with the array-method, which transforms sequences
of sequences into two dimensional arrays:

>>> x = np.array(((11,12,13), (21,22,23), (31,32,33)))

>>> print x

[[11 12 13]

[21 22 23]

[31 32 33]]

The attribute ndim tells us the number of dimensions of an array:

>>> x = np.array(((11,12,13), (21,22,23)))

>>> x.ndim

2

Some other neat examples are shown below:

4http://www.numpy.org

http://www.numpy.org

24 CHAPTER 1. OH HAY, NUMBERS!

[general_problems/numbers/testing_numpy.py]

import numpy as np

def testing_numpy():

’’’ tests many features of numpy ’’’

ax = np.array([1,2,3])

ay = np.array([3,4,5])

print(ax)

print(ax*2)

print(ax+10)

print(np.sqrt(ax))

print(np.cos(ax))

print(ax-ay)

print(np.where(ax<2, ax, 10))

m = np.matrix([ax, ay, ax])

print(m)

print(m.T)

grid1 = np.zeros(shape=(10,10), dtype=float)

grid2 = np.ones(shape=(10,10), dtype=float)

print(grid1)

print(grid2)

print(grid1[1]+10)

print(grid2[:,2]*2)

if __name__ == ’__main__’:

testing_numpy()

NumPy arrays are also much more efficient than Python’s lists, as we can
see in the benchmark tests below:

[general_problems/numbers/testing_numpy_speed.py]

import numpy

import time

def trad_version():

t1 = time.time()

1.8. THE NUMPY PACKAGE 25

X = range(10000000)

Y = range(10000000)

Z = []

for i in range(len(X)):

Z.append(X[i] + Y[i])

return time.time() - t1

def numpy_version():

t1 = time.time()

X = numpy.arange(10000000)

Y = numpy.arange(10000000)

Z = X + Y

return time.time() - t1

if __name__ == ’__main__’:

print(trad_version())

print(numpy_version())

’’’

Results:

3.23564291

0.0714290142059

’’’

26 CHAPTER 1. OH HAY, NUMBERS!

Chapter 2

Built-in Sequence Types

The next step in our studies is learning how Python represents sequence data
types. A sequence type is defined by having the following properties:

? membership operator (for example, the ability of using the keyword
in);

? a size method (given by the method len(seq));

? slicing properties (for example, seq[:-1]); and

? iterability (we can iterate the data inside loops).

Python has five built-in sequence types: strings, tuples, lists, byte
arrays, and bytes:1

>>> l = []

>>> type(l)

<type ’list’>

>>> s = ’’

>>> type(s)

<type ’str’>

>>> t = ()

>>> type(t)

<type ’tuple’>

>>> ba = bytearray(b’’)

1A named tuple is also available in the standard library, under the collections

package.

27

28 CHAPTER 2. BUILT-IN SEQUENCE TYPES

>>> type(ba)

<type ’bytearray’>

>>> b = bytes([])

>>> type(byte)

<type ’type’>

Mutability

In the last chapter we learned that numbers are immutable types in Python.
Now it’s time to learn about objects that are mutable. In Pyhon, tuple,
strings, and bytes are immutable, while lists and byte arrays are mutable.
Immutable types are in general more efficient than mutable. In addition,
some collection data types2 can only be indexed by immutable data types.

In Python any variable is an object reference, so copying mutable objects
can be tricky. When you say a = b you are actually pointing a to where b
points to. For this reason, it’s important to understand the concept of deep
copying:

To make a deep copy of a list:

>>> newList = myList[:]

>>> newList2 = list(myList2)

To make a deep copy of a set (we will see in the next chapter),

use:

>>> people = {"Buffy", "Angel", "Giles"}

>>> slayers = people.copy()

>>> slayers.discard("Giles")

>>> slayers.remove("Angel")

>>> slayers

{’Buffy’}

>>> people

{’Giles’, ’Buffy’, ’Angel’}

To make a deep copy of a dict (also in the next chapter), use the

following:

>>> newDict = myDict.copy()

2Collection data types, such as sets and dictionaries, are reviewed in the next chapter.

2.1. STRINGS 29

To make a deep copy of some other object, use the copy module:

>>> import copy

>>> newObj = copy.copy(myObj) # shallow copy

>>> newObj2 = copy.deepcopy(myObj2) # deep copy

The Slicing Operator

In Python’s sequence types, the slicing operator have the following syntax:

seq[start]

seq[start:end]

seq[start:end:step]

If we want to start counting from the right, we can represent the index
as negative:

>>> word = "Let us kill some vampires!"

>>> word[-1]

’!’

>>> word[-2]

’s’

>>> word[-2:]

’s!’

>>> word[:-2]

’Let us kill some vampire’

>>> word[-0]

’L’

2.1 Strings

Python represents strings, i.e. a sequence of characters, using the immutable
str type. In Python, every object has two output forms: while string forms
are designed to be human-readable, representational forms are designed to
produce an output that if fed to a Python interpreter, reproduces the rep-
resented object. When we write classes in Python, it is important to define
their string representation.

30 CHAPTER 2. BUILT-IN SEQUENCE TYPES

Unicode Strings

Python’s Unicode encoding is used to include a special characters in the string
(for example, whitespace). Starting from Python 3, all strings are Unicode,
not just plain bytes. To create a Unicode string, we use the ‘u’ prefix:

>>> u’Goodbye\u0020World !’

’Goodbye World !’

In the example above, the escape sequence indicates the Unicode character
with the ordinal value 0x0020. It is also useful to remember that in general
ASCII representations are given by only 8-bits while the Unicode represen-
tation needs 16-bits.

Methods for Strings

The join(list1) Method:

Joins all the strings in a list into one single string. While we could use +

to concatenate these strings, when a large volume of data is involved, this
becomes much less efficient:

>>> slayer = ["Buffy", "Anne", "Summers"]

>>> " ".join(slayer)

’Buffy Anne Summers’

>>> "-<>-".join(slayer)

’Buffy-<>-Anne-<>-Summers’

>>> "".join(slayer)

’BuffyAnneSummers’

join() can also be used with the built-in reversed() method:

>>> "".join(reversed(slayer))

’SummersAnneBuffy’

The rjust(width[, fillchar]) and ljust(width[, fillchar]) Meth-
ods:

Some formation (aligning) can be obtained with the methods rjust() (add
only at the end), ljust() (add only at the start):

2.1. STRINGS 31

>>> name = "Agent Mulder"

>>> name.rjust(50, ’-’)

’-----------------------------Agent Mulder’

The format() Method:

Used to format or add variable values to a string:

>>> "{0} {1}".format("I’m the One!", "I’m not")

"I’m the One! I’m not"

>>> "{who} turned {age} this year!".format(who="Buffy", age=17)

’She turned 88 this year’

>>> "The {who} was {0} last week".format(12, who="boy")

’Buffy turned 17 this year!’

From Python 3.1 it is possible to omit field names, in which case Python
will in effect put them in for us, using numbers starting from 0. For example:

>>> "{} {} {}".format("Python", "can", "count")

’Python can count’

However, using the operator + would allow a more concise style here. This
method allows three specifiers: s to force string form, r to force represen-
tational form, and a to force representational form but only using ASCII
characters:

>>> import decimal

>>> "{0} {0!s} {0!r} {0!a}".format(decimal.Decimal("99.9"))

"99.9 99.9 Decimal(’99.9’) Decimal(’99.9’)"

String (Mapping) Unpacking

The mapping unpacking operator is ** and it produces a key-value list suit-
able for passing to a function. The local variables that are currently in scope
are available from the built-in locals() and this can be used to feed the
format() method:

>>> hero = "Buffy"

>>> number = 999

32 CHAPTER 2. BUILT-IN SEQUENCE TYPES

>>> "Element {number} is a {hero}".format(**locals())

’Element 999 is a Buffy’

The splitlines(f) Method:

Returns the list of lines produced by splitting the string on line terminators,
stripping the terminators unless f is True:

>>> slayers = "Buffy\nFaith"

>>> slayers.splitlines()

[’Buffy’, ’Faith’]

The split(t, n) Method:

Returns a list of strings splitting at most n times on string t. If n is not given,
it splits as many times as possible. If t is not given, it splits on whitespace:

>>> slayers = "Buffy*Slaying-Vamps*16"

>>> fields = slayers.split("*")

>>> fields

[’Buffy’, ’Slaying-Vamps’, ’16’]

>>> job = fields[1].split("-")

>>> job

[’Slaying’, ’Vamps’]

We can use split() to write our own method for erasing spaces from
strings:

>>> def erase_space_from_string(string):

... s1 = string.split(" ")

... s2 = "".join(s1)

... return s2

A similar method, rsplit(), splits the string from right to left.

The strip(’chars’) Method:

Returns a copy of the string with leading and trailing whitespace (or the
characters chars) removed:

2.1. STRINGS 33

>>> slayers = "Buffy and Faith999"

>>> slayers.strip("999")

’Buffy and Faith’

The program bellow uses strip() to list every word and the number of
the times they occur in alphabetical order for some file:3

[general_problems/strings/count_unique_words.py]

import string

import sys

def count_unique_word():

words = {} # create an empty dictionary

strip = string.whitespace + string.punctuation + string.digits

+ "\"’"

for filename in sys.argv[1:]:

with open(filename) as file:

for line in file:

for word in line.lower().split():

word = word.strip(strip)

if len(word) > 2:

words[word] = words.get(word,0) +1

for word in sorted(words):

print("’{0}’ occurs {1} times.".format(word, words[word]))

Similar methods are: lstrip(), which returns a copy of the string with
all whitespace at the beginning of the string stripped away; and rstrip(),
which returns a copy of the string with all whitespace at the end of the string
stripped away.

The swapcase(’chars’) Method:

The swapcase() method returns a copy of the string with uppercase char-
acters lowercased and lowercase characters uppercased.

>>> slayers = "Buffy and Faith"

3A similar example is shown in the Default Dictionaries section.

34 CHAPTER 2. BUILT-IN SEQUENCE TYPES

>>> slayers.swapcase()

’bUFFY AND fAITH’

Similar methods are:

? capitalize() returns a copy of the string with only the first character
in uppercase;

? lower() returns a copy of the original string, but with all characters
in lowercase;

? upper() returns a copy of the original string, but with all characters
in uppercase.

The index(x) and find(x) Methods:

There are two methods to find the position of a string inside another string.
index(x) returns the index position of the substring x, or raises a ValueError
exception on failure. find(x) returns the index position of the substring x,
or -1 on failure:

>>> slayers = "Buffy and Faith"

>>> slayers.find("y")

4

>>> slayers.find("k")

-1

>>> slayers.index("k")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: substring not found

>>> slayers.index("y")

4

Extensions of the previous methods are: rfind(string), which returns
the index within the string of the last (from the right) occurrence of ‘string’;
and rindex(string), which returns the index within the string of the last
(from the right) occurrence of ‘string’ (causing an error if it cannot be found).

The count(t, start, end) Method:

Returns the number of occurrences of the string t in the string s:

2.2. TUPLES 35

>>> slayer = "Buffy is Buffy is Buffy"

>>> slayer.count("Buffy", 0, -1)

2

>>> slayer.count("Buffy")

3

The replace(t, u, n) Method:

Returns a copy of the string with every (or a maximum of n if given) occur-
rences of string t replaced with string u:

>>> slayer = "Buffy is Buffy is Buffy"

>>> slayer.replace("Buffy", "who", 2)

’who is who is Buffy’

2.2 Tuples

A tuple is an Python immutable sequence type consisting of values separated
by commas:

>>> t1 = 1234, ’hello!’

>>> t1[0]

1234

>>> t1

(12345, ’hello!’)

>>> t2 = t2, (1, 2, 3, 4, 5) # nested

>>> u

((1234, ’hello!’), (1, 2, 3, 4, 5))

Where strings have a character at every position, tuples have an object
reference at each position. Therefore, it its possible to create tuples that
contain mutable objects, such as lists. Empty tuples are constructed by
an empty pair of parentheses. A tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value
in parentheses):

36 CHAPTER 2. BUILT-IN SEQUENCE TYPES

>>> empty = ()

>>> t1 = ’hello’,

>>> len(empty)

0

>>> len(t1)

1

>>> t1

(’hello’,)

Methods for Tuples

The count(x) method counts how many times x appears in the tuple:

>>> t = 1, 5, 7, 8, 9, 4, 1, 4

>>> t.count(4)

2

The index(x) method returns the index position of the element x:

>>> t = 1, 5, 7

>>> t.index(5)

1

Tuple Unpacking

In Python, any iterable object can be unpacked using the sequence unpacking
operator, *. When used with two or more variables on the left-hand side of an
assignment, one of which preceded by *, items are assigned to the variables,
with all those left over assigned to the starred variable:

>>> x, *y = (1, 2, 3, 4)

>>> x

1

>>> y

[2, 3, 4]

2.2. TUPLES 37

Named Tuples

Python’s package collections4 contains a sequence data type called named
tuple. These objects behave just like the built-in tuple, with the same per-
formance characteristics, but they also carry the ability to refer to items in
the tuple by name as well as by index position. This allows the creation of
aggregates of data items:

>>> import collections

>>> MonsterTuple = collections.namedtuple("Monsters","name age

power")

>>> MonsterTuple = (’Vampire’, 230, ’immortal’)

>>> MonsterTuple

(’Vampire’, 230, ’immortal’)

The first argument to collections.namedtuple is the name of the custom
tuple data type to be created. The second argument is a string of space-
separated names, one for each item that the custom tuple will take. The
first argument and the names in the second argument must be valid Python
identifiers.

[general_problems/tuples/namedtuple_example.py]

from collections import namedtuple

def namedtuple_example():

’’’ show an example for named tuples

>>> namedtuple_example()

slayer

’’’

sunnydale = namedtuple(’name’, [’job’, ’age’])

buffy = sunnydale(’slayer’, ’17’)

print(buffy.job)

if __name__ == ’__main__’:

namedtuple_example()

4We are going to explore collections in the following chapters.

38 CHAPTER 2. BUILT-IN SEQUENCE TYPES

2.3 Lists

In general, in computer science, arrays are a very simple data structure
where elements are sequentially stored in continued memory and linked lists
are structures where several separated nodes link to each other. Iterating
over the contents of the data structure is equally efficient for both kinds, but
directly accessing an element at a given index has O(1) (complexity) runtime5

in an array, while it has O(n) in a linked list with n nodes (you would have
to transverse the list from the beginning). Furthermore, in a linked list, once
you know where you want to insert something, insertion is O(1), no matter
how many elements the list has. For arrays, an insertion would have to move
all elements that are to the right of the insertion point or moving all the
elements to a larger array if needed, being then O(n).

In Python, the closest object to an array is a list, which is a dynamic
resizing array and it does not have anything to do with the formal concept
of linked lists. Linked lists are a very important abstract data structure (we
will see more about them in a following chapter) and it is fundamental to
understand what makes them different from arrays (or Python’s lists).

Lists in Python are created by comma-separated values, between square
brackets. List items do not need to have all the same data type. Unlike
strings which are immutable, it is possible to change individual elements of
a list (lists are mutable):

>>> q = [2, 3]

>>> p = [1, q, 4]

>>> p[1].append("buffy")

>>> p

[1, [2, 3, ’buffy’], 4]

>>> q

[2, 3, ’buffy’]

>>> q

[2, 3, ’buffy’]

To insert items, lists perform best (O(1)) when items are added or re-
moved at the end, using the methods append() and pop(), respectively.
The worst performance (O(n)) occurs with operations that need to search

5The Big-O notation is a key to understand algorithms! We will learn more about it
in the following chapters and extensively use them in our studies. For now just keep in
mine that O(1) times � O(n) � O(n2), etc...

2.3. LISTS 39

for items in the list, for example, using remove() or index(), or using in

for membership testing.6

If fast searching or membership testing is required, a collection type such
as a set or a dictionary may be a more suitable choice (as we will see in
the next chapter). Alternatively, lists can provide fast searching if they are
kept in order by being sorted (we will see searching methods that perform on
O(log n) for sorted sequences, particular the binary search, in the following
chapters).

Methods for Lists

The append(x) Method:

Adds a new element at the end of the list. It is equivalent to list[len(list):]=
[x]:

>>> people = ["Buffy", "Faith"]

>>> people.append("Giles")

>>> people

[’Buffy’, ’Faith’, ’Giles’]

>>> people[len(people):] = ["Xander"]

>>> people

[’Buffy’, ’Faith’, ’Giles’, ’Xander’]

The extend(c) Method:

This method is used to extend the list by appending all the iterable items in
the given list. Equivalent to a[len(a):]=L or using +=:

>>> people = ["Buffy", "Faith"]

>>> people.extend("Giles")

>>> people

[’Buffy’, ’Faith’, ’G’, ’i’, ’l’, ’e’, ’s’]

>>> people += "Willow"

>>> people

[’Buffy’, ’Faith’, ’G’, ’i’, ’l’, ’e’, ’s’, ’W’, ’i’, ’l’, ’l’,

’o’, ’w’]

6This explains why append() is so much more efficient than insert().

40 CHAPTER 2. BUILT-IN SEQUENCE TYPES

>>> people += ["Xander"]

>>> people

[’Buffy’, ’Faith’, ’G’, ’i’, ’l’, ’e’, ’s’, ’W’, ’i’, ’l’, ’l’,

’o’, ’w’, ’Xander’]

The insert(i, x) Method:

Inserts an item at a given position i: the first argument is the index of the
element before which to insert:

>>> people = ["Buffy", "Faith"]

>>> people.insert(1, "Xander")

>>> people

[’Buffy’, ’Xander’, ’Faith’]

The remove() Method:

Removes the first item from the list whose value is x. Raises a ValueError

exception if x is not found:

>>> people = ["Buffy", "Faith"]

>>> people.remove("Buffy")

>>> people

[’Faith’]

>>> people.remove("Buffy")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

The pop() Method:

Removes the item at the given position in the list, and then returns it. If no
index is specified, pop() returns the last item in the list:

>>> people = ["Buffy", "Faith"]

>>> people.pop()

’Faith’

>>> people

2.3. LISTS 41

[’Buffy’]

The del Method:

Deletes the object reference, not the contend, i.e., it is a way to remove an
item from a list given its index instead of its value. This can also be used to
remove slices from a list:

>>> a = [-1, 4, 5, 7, 10]

>>> del a[0]

>>> a

[4, 5, 7, 10]

>>> del a[2:3]

>>> a

[4, 5, 10]

>>> del a # also used to delete entire variable

When an object reference is deleted and if no other object refers to its
data, Python schedules the data item to be garbage-collected.7

The index(x) Method:

Returns the index in the list of the first item whose value is x:

>>> people = ["Buffy", "Faith"]

>>> people.index("Buffy")

0

The count(x) Method:

Returns the number of times x appears in the list:

>>> people = ["Buffy", "Faith", "Buffy"]

>>> people.count("Buffy")

2

7Garbage is a memory occupied by objects that are no longer referenced and garbage
collection is a form of automatic memory management, freeing the memory occupied by
the garbage.

42 CHAPTER 2. BUILT-IN SEQUENCE TYPES

The sort() Method:

Sorts the items of the list, in place:

>>> people = ["Xander", "Faith", "Buffy"]

>>> people.sort()

>>> people

[’Buffy’, ’Faith’, ’Xander’]

The reverse() Method:

Reverses the elements of the list, in place:

>>> people = ["Xander", "Faith", "Buffy"]

>>> people.reverse()

>>> people

[’Buffy’, ’Faith’, ’Xander’]

List Unpacking

Similar to tuple unpacking:

>>> first, *rest = [1,2,3,4,5]

>>> first

1

>>> rest

[2, 3, 4, 5]

Python also has a related concept called starred arguments, that can be
used as a passing argument for a function:

>>> def example_args(a, b, c):

... return a * b * c # here * is the multiplication operator

>>> L = [2, 3, 4]

>>> example_args(*L)

24

>>> example_args(2, *L[1:])

24

2.3. LISTS 43

List Comprehensions

A list comprehension is an expression and loop (with an optional condition)
enclosed in brackets:

[item for item in iterable]

[expression for item in iterable]

[expression for item in iterable if condition]

Some examples of list comprehensions:

>>> a = [y for y in range(1900, 1940) if y%4 == 0]

>>> a

[1900, 1904, 1908, 1912, 1916, 1920, 1924, 1928, 1932, 1936]

>>> b = [2**i for i in range(13)]

>>> b

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

>>> c = [x for x in a if x%2==0]

>>> c

[0, 4, 16, 36, 64]

>>> d = [str(round(355/113.0,i)) for i in range(1,6)]

>>> d

[’3.1’, ’3.14’, ’3.142’, ’3.1416’, ’3.14159’]

>>> words = ’Buffy is awesome and a vampire slayer’.split()

>>> e = [[w.upper(), w.lower(), len(w)] for w in words]

>>> for i in e:

... print(i)

...

[’BUFFY’, ’buffy’, 5]

[’IS’, ’is’, 2]

[’AWESOME’, ’awesome’, 7]

[’AND’, ’and’, 3]

[’A’, ’a’, 1]

[’VAMPIRE’, ’vampire’, 7]

[’SLAYER’, ’slayer’, 6]

List comprehensions should only be used for simple cases, when each
portion fits in one line (no multiple for clauses or filter expressions):

44 CHAPTER 2. BUILT-IN SEQUENCE TYPES

[Good]

result = []

for x in range(10):

for y in range(5):

if x * y > 10:

result.append((x, y))

for x in range(5):

for y in range(5):

if x != y:

for z in range(5):

if y != z:

yield (x, y, z)

return ((x, complicated_transform(x))

for x in long_generator_function(parameter)

if x is not None)

squares = [x * x for x in range(10)]

eat(jelly_bean for jelly_bean in jelly_beans

if jelly_bean.color == ’black’)

[Bad]

result = [(x, y) for x in range(10) for y in range(5) if x * y >

10]

return ((x, y, z)

for x in xrange(5)

for y in xrange(5)

if x != y

for z in xrange(5)

if y != z)

Runtime Analysis for Lists

To understand better the performance of Python’s lists, we benchmark some
lists’ methods. In the snippet bellow, we use Python’s timeit module to

2.3. LISTS 45

create a Timer object whose first parameter is what we want to time and the
second parameter is a statement to set up the test. The timeit module will
time how long it takes to execute the statement some number of times (one
million times by default). When test is done, it returns the time as a floating
point value representing the total number of seconds:

[general_problems/lists/runtime_lists_with_timeit_module.py]

def test1():

l = []

for i in range(1000):

l = l + [i]

def test2():

l = []

for i in range(1000):

l.append(i)

def test3():

l = [i for i in range(1000)]

def test4():

l = list(range(1000))

if __name__ == ’__main__’:

import timeit

t1 = timeit.Timer("test1()", "from __main__ import test1")

print("concat ",t1.timeit(number=1000), "milliseconds")

t2 = timeit.Timer("test2()", "from __main__ import test2")

print("append ",t2.timeit(number=1000), "milliseconds")

t3 = timeit.Timer("test3()", "from __main__ import test3")

print("comprehension ",t3.timeit(number=1000), "milliseconds")

t4 = timeit.Timer("test4()", "from __main__ import test4")

print("list range ",t4.timeit(number=1000), "milliseconds")

""" The results are:

(’concat ’, 2.366791009902954, ’milliseconds’)

(’append ’, 0.16743111610412598, ’milliseconds’)

(’comprehension ’, 0.06446194648742676, ’milliseconds’)

46 CHAPTER 2. BUILT-IN SEQUENCE TYPES

(’list range ’, 0.021029949188232422, ’milliseconds’)

So we see the following pattern for lists:

Operation Big-O Efficiency

index [] O(1)

index assignment O(1)

append O(1)

pop() O(1)

pop(i) O(n)

insert(i,item) O(n)

del operator O(n)

iteration O(n)

contains (in) O(n)

get slice [x:y] O(k)

del slice O(n)

set slice O(n+k)

reverse O(n)

concatenate O(k)

sort O(n log n)

multiply O(nk)

"""

2.4 Bytes and Byte Arrays

Python provides two data types for handling raw bytes: bytes which is
immutable, and bytearray, which is mutable. Both types hold a sequence
of zero of more 8-bit unsigned integers in the range 0 ... 255. The byte type
is very similar to the string type and the bytearray provides mutating
methods similar to lists.

Bits and Bitwise Operations

Bitwise operations can be very useful to manipulate numbers represented as
bits (for example, reproduce an division without using the division opera-
tion). We can you quickly compute 2x by the left-shifting operation: 1� x.

2.4. BYTES AND BYTE ARRAYS 47

We can also quickly verify whether a number is a power of 2 by checking
whether x&(x− 1) is 0 (if x is not an even power of 2, the highest position
of x with a 1 will also have a 1 in x−1, otherwise, x will be 100...0 and x−1
will be 011...1; add them together they will return 0).

48 CHAPTER 2. BUILT-IN SEQUENCE TYPES

Chapter 3

Collection Data Structures

Differently from the last chapter’s sequence data structures, where the data
can be ordered or sliced, collection data structures are containers which ag-
gregates data without relating them. Collection data structures also have
some proprieties that sequence types have:

? membership operator (for example, using in);

? a size method (given by len(seq)); and

? iterability (we can iterate the data in loops).

In Python, built-in collection data types are given by sets and dicts. In
addition, many useful collection data are found in the collections package,
as we discuss in the last part of this chapter.

3.1 Sets

In Python, a Set is an unordered collection data type that is iterable, mu-
table, and has no duplicate elements. Sets are used for membership testing
and eliminating duplicate entries. Sets have O(1) insertion, so the runtime
of union is O(m+ n). For intersection, it is only necessary to transverse the
smaller set, so the runtime is O(n). 1

1Python’s collection package has supporting for Ordered sets. This data type enforces
some predefined comparison for their members.

49

50 CHAPTER 3. COLLECTION DATA STRUCTURES

Frozen Sets

Frozen sets are immutable objects that only support methods and operators
that produce a result without affecting the frozen set or sets to which they
are applied.

Methods for Sets

The add(x) Method:

Adds the item x to set if it is not already in the set:

>>> people = {"Buffy", "Angel", "Giles"}

>>> people.add("Willow")

>>> people

{’Willow’, ’Giles’, ’Buffy’, ’Angel’}

The s.update(t) or s| = t Methods:

They both return a set s with elements added from t.

The s.union(t) or s|t Methods:

They both perform union of the two sets.

The s.intersection(t) or s&t Methods:

They both return a new set that has each item from the sets:

>>> people = {"Buffy", "Angel", "Giles", "Xander"}

>>> people.intersection({"Angel", "Giles", "Willow"})

{’Giles’, ’Angel’}

The s.difference(t) or s− t Methods:

They both return a new set that has every item that is not in the second set:

>>> people = {"Buffy", "Angel", "Giles", "Xander"}

>>> vampires = {"Spike", "Angel", "Drusilia"}

3.1. SETS 51

>>> people.difference(vampires)

{’Xander’, ’Giles’, ’Buffy’}

The clear() Method:

Removes all the items in the set:

>>> people = {"Buffy", "Angel", "Giles"}

>>> people.clear()

>>> people

set()

The discard(x), remove(x), and pop() Methods:

discard(x) removes the item x from the set. remove(x) removes the item
x from the set or raises a KeyError exception if the element is not in the set.
pop() returns and removes a random item from the set or raises a KeyError

exception if the set is empty.

Sets with Lists and Dictionaries

You can cast a set from a list. For example, the snippet below shows some
of the available set operations on lists:

[general_problems/sets/set_operations_with_lists.py]

def difference(l1):

""" return the list with duplicate elements removed """

return list(set(l1))

def intersection(l1, l2):

""" return the intersection of two lists """

return list(set(l1) & set(l2))

def union(l1, l2):

""" return the union of two lists """

return list(set(l1) | set(l2))

def test_sets_operations_with_lists():

52 CHAPTER 3. COLLECTION DATA STRUCTURES

l1 = [1,2,3,4,5,9,11,15]

l2 = [4,5,6,7,8]

l3 = []

assert(difference(l1) == [1, 2, 3, 4, 5, 9, 11, 15])

assert(difference(l2) == [8, 4, 5, 6, 7])

assert(intersection(l1, l2) == [4,5])

assert(union(l1, l2) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15])

assert(difference(l3) == [])

assert(intersection(l3, l2) == l3)

assert(sorted(union(l3, l2)) == sorted(l2))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_sets_operations_with_lists()

We can also use sets’ proprieties in dictionaries:2

[general_problems/dicts/set_operations_dict.py]

from collections import OrderedDict

def set_operations_with_dict():

pairs = [(’a’, 1), (’b’,2), (’c’,3)]

d1 = OrderedDict(pairs)

print(d1) # (’a’, 1), (’b’, 2), (’c’, 3)

d2 = {’a’:1, ’c’:2, ’d’:3, ’e’:4}

print(d2) # {’a’: 1, ’c’: 2, ’e’: 4, ’d’: 3}

union = d1.keys() & d2.keys()

print(union) # {’a’, ’c’}

union_items = d1.items() & d2.items()

print(union_items) # {(’a’, 1)}

subtraction1 = d1.keys() - d2.keys()

print(subtraction1) # {’b’}

2Sets properties can be used on the dict’s attributes items() and keys() attributes,
however values() do not support set operations.

3.2. DICTIONARIES 53

subtraction2 = d2.keys() - d1.keys()

print(subtraction2) # {’d’, ’e’}

subtraction_items = d1.items() - d2.items()

print(subtraction_items) # {(’b’, 2), (’c’, 3)}

’’’ we can remove keys from a dict doing: ’’’

d3 = {key:d2[key] for key in d2.keys() - {’c’, ’d’}}

print(d3) {’a’: 1, ’e’: 4}

if __name__ == ’__main__’:

set_operations_with_dict()

3.2 Dictionaries

Dictionaries in Python are implemented using hash tables3. Hashing func-
tions compute some random integer value from an arbitrary object in con-
stant time, that can be used as an index into an array:

>>> hash(42)

42

>>> hash("hello")

355070280260770553

A dict is a collection mapping type that is iterable and supports the mem-
bership operator in and the size function len(). Mappings are collections
of key-value items, providing methods for accessing items and their keys and
values. When iterated, unordered mapping types provide their items in an
arbitrary order.

Accessing dictionaries has runtime O(1) so they are used to keep counts
of unique items (for example, counting the number of each unique word in a
file) and for fast membership test. Dictionaries are mutable, so we can easily
add or remove items, but since they are unordered, they have no notion of

3A hash table is a data structure used to implement an associative array, a structure
that can map keys to values.

54 CHAPTER 3. COLLECTION DATA STRUCTURES

index position (so that they cannot be sliced or striped):

>>> tarantino = {}

>>> tarantino[’name’] = ’Quentin Tarantino’

>>> tarantino[’job’] = ’director’

>>> tarantino

{’job’: ’director’, ’name’: ’Quentin Tarantino’}

>>>

>>> sunnydale = dict({"name":"Buffy", "age":16, "hobby":"slaying"})

>>> sunnydale

{’hobby’: ’slaying’, ’age’: 16, ’name’: ’Buffy’}

>>>

>>> sunnydale = dict(name="Giles", age=45, hobby="Watch")

>>> sunnydale

{’hobby’: ’Watch’, ’age’: 45, ’name’: ’Giles’}

>>>

>>> sunnydale = dict([("name", "Willow"), ("age",15), ("hobby",

"nerding")])

>>> sunnydale

{’hobby’: ’nerding’, ’age’: 15, ’name’: ’Willow’}

Methods for Dictionaries

The setdefault(key[, default]) Method:

The setdefault() method is used when we want to access a key in the
dictionary without being sure that this key exists (if we simply try to ac-
cess a non-existent key in a dictionary, we will get an exception). With
setdefault(), if key is in the dictionary, we get the value to it. If not, we
successfully insert the new key with the value of default:

[general_problems/dicts/setdefault_example.py]

def usual_dict(dict_data):

newdata = {}

for k, v in dict_data:

if k in newdata:

newdata[k].append(v)

else:

3.2. DICTIONARIES 55

newdata[k] = [v]

return newdata

def setdefault_dict(dict_data):

newdata = {}

for k, v in dict_data:

newdata.setdefault(k, []).append(v)

return newdata

def test_setdef(module_name=’this module’):

dict_data = ((’key1’, ’value1’),

(’key1’, ’value2’),

(’key2’, ’value3’),

(’key2’, ’value4’),

(’key2’, ’value5’),)

print(usual_dict(dict_data))

print(setdefault_dict(dict_data))

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_setdef()

The update([other]) Method:

Updates the dictionary with the key/value pairs from other, overwriting ex-
isting keys. .

The get(key) Method:

Returns the key’s associated value or None if the key is not in the dictionary:

>>> sunnydale = dict(name="Xander", age=17, hobby="winning")

>>> sunnydale.get("hobby")

’winning’

56 CHAPTER 3. COLLECTION DATA STRUCTURES

The items(), values(), and keys() Methods:

The items(), keys(), and values() methods all return dictionary views. A
dictionary view is effectively a read-only iterable object that appears to hold
the dictionary’s items or keys or values:

>>> sunnydale = dict(name="Xander", age=17, hobby="winning")

>>> sunnydale.items()

dict_items([(’hobby’, ’winning’), (’age’, 17), (’name’, ’Xander’)])

>>> sunnydale.values()

dict_values([’winning’, 17, ’Xander’])

>>> sunnydale.keys()

dict_keys([’hobby’, ’age’, ’name’])

The pop() and popitem() Methods:

The pop() method removes an arbitrary item from the dictionary, return-
ing it. The popitem() method removes an arbitrary (key, value) from the
dictionary, also returning it.

The clear() Method:

Removes all the items in the dictionary:

>>> sunnydale.clear()

>>> sunnydale

{}

Runtime Analysis for Dictionaries

We analyze Python’s dictionary performance by benchmarking some avail-
able methods. The snippet below shows that the membership operation for
lists is O(n) and for dictionaries is O(1)):

[general_problems/dicts/runtime_dicts_with_timeit_module.py]

import timeit

import random

3.2. DICTIONARIES 57

for i in range(10000,1000001,20000):

t = timeit.Timer("random.randrange(%d) in x"%i, "from __main__

import random,x")

x = list(range(i))

lst_time = t.timeit(number=1000)

x = {j:None for j in range(i)}

d_time = t.timeit(number=1000)

print("%d,%10.3f,%10.3f" % (i, lst_time, d_time))

""" There results are:

10000, 0.192, 0.002

30000, 0.600, 0.002

50000, 1.000, 0.002

70000, 1.348, 0.002

90000, 1.755, 0.002

110000, 2.194, 0.002

130000, 2.635, 0.002

150000, 2.951, 0.002

170000, 3.405, 0.002

190000, 3.743, 0.002

210000, 4.142, 0.002

230000, 4.577, 0.002

250000, 4.797, 0.002

270000, 5.371, 0.002

290000, 5.690, 0.002

310000, 5.977, 0.002

So we can see the linear tile for lists, and constant for dict!

Big-O Efficiency of Python Dictionary Operations

Operation Big-O Efficiency

copy O(n)

get item O(1)

set item O(1)

delete item O(1)

contains (in) O(1)

iteration O(n)

"""

58 CHAPTER 3. COLLECTION DATA STRUCTURES

Iterating over Dictionaries

A loop over a dictionary iterates over its keys by default. The keys will
appear in an arbitrary order but we can use sorted() to iterate over the
items in a sorted way. This also works for the attributes keys(), values(),
and items():

>>> for key in sorted(dict.keys()):

... print key, dict[key]

An useful tool to create a list of key-items for a dictionary is by using
generators:

def items_in_key_order(d):

for key in sorted(d):

yield key, d[key]

Dictionaries also support reverse iteration using reversed(). Finally,
default iterators should be used for types that support them:

[Good] for key in adict: ...

if key not in adict: ...

[Bad] for key in adict.keys(): ...

if not adict.has_key(key): ...

Branching using Dictionaries

We can use dictionaries to write a branching menu:

if action == "a":

add_to_dict(db)

elif action == "e":

edit_dict(db)

And a more efficient way:

3.3. PYTHON’S COLLECTION DATA TYPES 59

functions = dict(a=add_to_dict, e=edit_dict,...)

functions[actions](db)

3.3 Python’s collection Data Types

Python’s collections module implements specialized container data types
providing high-performance alternatives to the general purpose built-in con-
tainers.

Default Dictionaries

Default dictionaries are an additional unordered mapping type provided
by Python’s collections.defaultdict. They have all the operators and
methods that a built-in dictionary has, but, in addition, they handle missing
keys:

[general_examples/dicts/defaultdict_example.py]

from collections import defaultdict

def defaultdict_example():

’’’ show some examples for defaultdicts ’’’

pairs = {(’a’, 1), (’b’,2), (’c’,3)}

d1 = {}

for key, value in pairs:

if key not in d1:

d1[key] = []

d1[key].append(value)

print(d1)

d2 = defaultdict(list)

for key, value in pairs:

d2[key].append(value)

print(d2)

60 CHAPTER 3. COLLECTION DATA STRUCTURES

if __name__ == ’__main__’:

defaultdict_example()

Ordered Dictionaries

Ordered dictionaries are an ordered mapping type provided by Python’s
collections.OrderedDict. They have all the methods and properties of a
built-in dict, but in addition they store items in the insertion order:

[general_examples/dicts/OrderedDict_example.py]

from collections import OrderedDict

pairs = [(’a’, 1), (’b’,2), (’c’,3)]

d1 = {}

for key, value in pairs:

if key not in d1:

d1[key] = []

d1[key].append(value)

for key in d1:

print(key, d1[key])

d2 = OrderedDict(pairs)

for key in d2:

print(key, d2[key])

if __name__ == ’__main__’:

OrderedDict_example()

"""

a [1]

c [3]

b [2]

a 1

b 2

c 3

"""

3.3. PYTHON’S COLLECTION DATA TYPES 61

We can create ordered dictionaries incrementally:

>>> tasks = collections.OrderedDict()

>>> tasks[8031] = "Backup"

>>> tasks[4027] = "Scan Email"

>>> tasks[5733] = "Build System"

>>> tasks

OrderedDict([(8031, ’Backup’), (4027, ’Scan Email’), (5733, ’Build

System’)])

If we change a key value, the order is not changed. To move an item to
the end we should delete and re-insert it. We can also call popitem() to
remove and return the last key-value item in the ordered dictionary.

In general, using an ordered dictionary to produce a sorted dictionary
makes sense only if we expect to iterate over the dictionary multiple times,
and if we do not expect to do any insertions (or very few).

Counter Dictionaries

A specialised Counter type (subclass for counting hashable objects) is pro-
vided by Python’s collections.Counter:

[general_examples/dicts/Counter_example.py]

from collections import Counter

def Counter_example():

’’’ show some examples for Counter ’’’

’’’ it is a dictionary that maps the items to the number of

occurrences ’’’

seq1 = [1, 2, 3, 5, 1, 2, 5, 5, 2, 5, 1, 4]

seq_counts = Counter(seq1)

print(seq_counts)

’’’ we can increment manually or use the update() method ’’’

seq2 = [1, 2, 3]

seq_counts.update(seq2)

print(seq_counts)

62 CHAPTER 3. COLLECTION DATA STRUCTURES

seq3 = [1, 4, 3]

for key in seq3:

seq_counts[key] += 1

print(seq_counts)

’’’ also, we can use set operations such as a-b or a+b ’’’

seq_counts_2 = Counter(seq3)

print(seq_counts_2)

print(seq_counts + seq_counts_2)

print(seq_counts - seq_counts_2)

if __name__ == ’__main__’:

Counter_example()

"""

Counter({5: 4, 1: 3, 2: 3, 3: 1, 4: 1})

Counter({1: 4, 2: 4, 5: 4, 3: 2, 4: 1})

Counter({1: 5, 2: 4, 5: 4, 3: 3, 4: 2})

Counter({1: 1, 3: 1, 4: 1})

Counter({1: 6, 2: 4, 3: 4, 5: 4, 4: 3})

Counter({1: 4, 2: 4, 5: 4, 3: 2, 4: 1})

"""

3.4. FURTHER EXAMPLES 63

3.4 Further Examples

Counting Frequency of Items

In the example bellow we use collections.Counter()’s most common()

method to find the top N recurring words in a sequence:

[general_problems/dicts/find_top_N_recurring_words.py]

from collections import Counter

def find_top_N_recurring_words(seq, N):

dcounter = Counter()

for word in seq.split():

dcounter[word] += 1

return dcounter.most_common(N)

def test_find_top_N_recurring_words(module_name=’this module’):

seq = ’buffy angel monster xander a willow gg buffy the monster

super buffy angel’

N = 3

assert(find_top_N_recurring_words(seq, N) == [(’buffy’, 3),

(’monster’, 2), (’angel’, 2)])

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_find_top_N_recurring_words()

The program below counts all the unique words in a file:

[general_problems/dicts/count_unique_words.py]

import collections

import string

import sys

64 CHAPTER 3. COLLECTION DATA STRUCTURES

def count_unique_word():

words = collections.defaultdict(int)

strip = string.whitespace + string.punctuation + string.digits

+ "\"’"

for filename in sys.argv[1:]:

with open(filename) as file:

for line in file:

for word in line.lower().split():

word = word.strip(strip)

if len(word) > 2:

words[word] = +1

for word in sorted(words):

print("’{0}’ occurs {1} times.".format(word, words[word]))

Anagrams

The following program finds whether two words are anagrams. Since sets
do not count occurrence, and sorting a list is O(n log n), hash tables can
be the best solution in this case. The procedure we use is: we scan the
first string and add all the character occurrences. Then we scan the second
string, decreasing all the character occurrences. In the end, if all the entries
are zero, the string is an anagram:

[general_problems/dicts/verify_two_strings_are_anagrams.py]

def verify_two_strings_are_anagrams(str1, str2):

ana_table = {key:0 for key in string.ascii_lowercase}

for i in str1:

ana_table[i] += 1

for i in str2:

ana_table[i] -= 1

verify whether all the entries are 0

if len(set(ana_table.values())) < 2: return True

else: return False

3.4. FURTHER EXAMPLES 65

def test_verify_two_strings_are_anagrams():

str1 = ’marina’

str2 = ’aniram’

assert(verify_two_strings_are_anagrams(str1, str2) == True)

str1 = ’google’

str2 = ’gouglo’

assert(verify_two_strings_are_anagrams(str1, str2) == False)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_verify_two_strings_are_anagrams()

Another way to find whether two words are anagrams is using the hash-
ing function’s proprieties, where every different amount of characters should
give a different result. In the following program, ord() returns an integer
representing the Unicode code point of the character when the argument is a
unicode object, or the value of the byte when the argument is an 8-bit string:

[general_problems/dicts/find_anagram_hash_function.py]

def hash_func(astring, tablesize):

sum = 0

for pos in range(len(astring)):

sum = sum + ord(astring[pos])

return sum%tablesize

def find_anagram_hash_function(word1, word2):

tablesize = 11

return hash_func(word1, tablesize) == hash_func(word2,

tablesize)

def test_find_anagram_hash_function(module_name=’this module’):

word1 = ’buffy’

word2 = ’bffyu’

word3 = ’bffya’

assert(find_anagram_hash_function(word1, word2) == True)

assert(find_anagram_hash_function(word1, word3) == False)

66 CHAPTER 3. COLLECTION DATA STRUCTURES

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_find_anagram_hash_function()

Sums of Paths

The following program uses two different dictionary containers to determine
the number of ways two dices can sum to a certain value:

[general_problems/dicts/find_dice_probabilities.py]

from collections import Counter, defaultdict

def find_dice_probabilities(S, n_faces=6):

if S > 2*n_faces or S < 2: return None

cdict = Counter()

ddict = defaultdict(list)

for dice1 in range(1, n_faces+1):

for dice2 in range(1, n_faces+1):

t = [dice1, dice2]

cdict[dice1+dice2] += 1

ddict[dice1+dice2].append(t)

return [cdict[S], ddict[S]]

def test_find_dice_probabilities(module_name=’this module’):

n_faces = 6

S = 5

results = find_dice_probabilities(S, n_faces)

print(results)

assert(results[0] == len(results[1]))

if __name__ == ’__main__’:

test_find_dice_probabilities()

3.4. FURTHER EXAMPLES 67

Finding Duplicates

The program below uses dictionaries to find and delete all the duplicate
characters in a string:

[general_problems/dicts/delete_duplicate_char_str.py]

import string

def delete_unique_word(str1):

table_c = { key : 0 for key in string.ascii_lowercase}

for i in str1:

table_c[i] += 1

for key, value in table_c.items():

if value > 1:

str1 = str1.replace(key, "")

return str1

def test_delete_unique_word():

str1 = "google"

assert(delete_unique_word(str1) == ’le’)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_delete_unique_word()

68 CHAPTER 3. COLLECTION DATA STRUCTURES

Chapter 4

Python’s Structure and
Modules

4.1 Modules in Python

In Python, modules are defined using the built-in name def. When def is
executed, a function object is created together with its object reference. If we
do not define a return value, Python automatically returns None (like in C,
we call the function a procedure when it does not return a value).

An activation record happens every time we invoke a method: information
is put in the stack to support invocation. Activation records process in the
following order:

Activation Records

1. the actual parameters of the method are pushed onto the stack,

2. the return address is pushed onto the stack,

3. the top-of-stack index is incremented by the total amount required by
the local variables within the method,

4. a jump to the method.

The process of unwinding an activation record happens in the following
order:

69

70 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

1. the top-of-stack index is decremented by the total amount of memory
consumed,

2. the returned address is popped off the stack,

3. the top-of-stack index is decremented by the total amount of memory
by the actual parameters.

Default Values in Modules

Whenever you create a module, remember that mutable objects should not
be used as default values in the function or method definition:

[Good]

def foo(a, b=None):

if b is None:

b = []

[Bad]

def foo(a, b=[]):

The init .py File

A package is a directory that contains a set of modules and a file called
init .py . This is required to make Python treat the directories as contain-

ing packages, preventing directories with a common name (such as “string”)
from hiding valid modules that occur later on the module search path:

>>> import foldername.filemodulename

In the simplest case, it can just be an empty file, but it can also execute
initialization code for the package or set the all variable: init .py to:

__all__ = ["file1", ...]

(with no .py in the end).

Moreover, the statement:

from foldername import *

4.1. MODULES IN PYTHON 71

means importing every object in the module, except those whose names begin
with , or if the module has a global all variable, the list in it.

Checking the Existence of a Module

To check the existence of a module, we use the flag -c:

$ python -c "import decimas"

Traceback (most recent call last):

File "<string>", line 1, in <module>

ImportError: No module named decimas

The name Variable

Whenever a module is imported, Python creates a variable for it called
name , and stores the module’s name in this variable. In this case, ev-

erything below the statement:

if __name__ == ’__main__’:

will not be executed. In the other hand, if we run the .py file directly,
Python sets name to main , and every instruction following the above
statement will be executed.

Byte-coded Compiled Modules

Byte-compiled code, in form of .pyc files, is used by the compiler to speed-up
the start-up time (load time) for short programs that use a lot of standard
modules.

When the Python interpreter is invoked with the -O flag, optimized code is
generated and stored in .pyo files. The optimizer removes assert statements.
This also can be used to distribute a library of Python code in a form that

is moderately hard to reverse engineer.

The sys Module

The variable sys.path is a list of strings that determines the interpreter’s
search path for modules. It is initialized to a default path taken from the

72 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

environment variable PYTHONPATH, or from a built-in default. You can modify
it using standard list operations:

>>> import sys

>>> sys.path.append(/buffy/lib/ python)

The variables sys.ps1 and sys.ps2 define the strings used as primary
and secondary prompts. The variable sys.argv allows us to use the argu-
ments passed in the command line inside our programs:

import sys

def main():

’’’ print command line arguments ’’’

for arg in sys.argv[1:]:

print arg

if __name__ == "__main__":

main()

The built-in method dir() is used to find which names a module defines
(all types of names: variables, modules, functions). It returns a sorted list of
strings:

>>> import sys

>>> dir(sys)

[__name__ , argv , builtin_module_names , copyright ,

exit , maxint , modules , path , ps1 ,

ps2 , setprofile , settrace , stderr ,

stdin , stdout , version]

It does not list the names of built-in functions and variables. Therefore, we
can see that dir() is useful to find all the methods or attributes of an object.

4.2. CONTROL FLOW 73

4.2 Control Flow

if

The if statement substitutes the switch or case statements in other lan-
guages:1

>>> x = int(input("Please enter a number: "))

>>> if x < 0:

... x = 0

... print "Negative changed to zero"

>>> elif x == 0:

... print "Zero"

>>> elif x == 1:

... print "Single"

>>> else:

... print "More"

for

The for statement in Python differs from C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal), or giving
the user the ability to define both the iteration step and halting condition
(as C), Python’s for statement iterates over the items of any sequence (e.g.,
a list or a string), in the order that they appear in the sequence:

>>> a = ["buffy", "willow", "xander", "giles"]

>>> for i in range(len(a)):

... print(a[i])

buffy

willow

xander

giles

1Note that colons are used with else, elif, and in any other place where a suite is to
follow.

74 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

False and True in Python

False is defined by the predefined constant False, or the special object None,
or by an empty sequence of collection (empty string ’ ’, list [], or tuple ()).
Anything else is True. It is also possible to assign the result of a comparison
or other Boolean expression to a variable:

>>> string1, string2, string3 = ’’, ’monsters’, ’aliens’

>>> non_null = string1 or string2 or string3

>>> non_null

’monsters’

The Google Python Style guide sets the following rules for using implicit
False in Python:

? Never use == or != to compare singletons, such as the built-in variable
None. Use is or is not instead.

? Beware of writing if x: when you really mean if x is not None.

? Never compare a boolean variable to False using ==. Use if not x:

instead. If you need to distinguish False from None then chain the
expressions, such as if not x and x is not None:.

? For sequences (strings, lists, tuples), use the fact that empty sequences
are False, so if not seq: or if seq: is preferable to if len(seq):

or if not len(seq):.

? When handling integers, implicit False may involve more risk than
benefit, such as accidentally handling None as 0:

[Good]

if not users: print ’no users’

if foo == 0: self.handle_zero()

if i % 10 == 0: self.handle_multiple_of_ten()

[Bad]

if len(users) == 0: print ’no users’

if foo is not None and not foo: self.handle_zero()

if not i % 10: self.handle_multiple_of_ten()

4.2. CONTROL FLOW 75

yield vs. return

The difference between the keywords yield and return is that the former
returns each value to the caller and then only returns to the caller when all
values to return have been exhausted, and the latter causes the method to exit
and return control to the caller.

One great feature in Python is how it handles iterability. An iterator is a
container object that implements the iterator protocol and is based on two
methods: next, which returns the next item in the container, and iter

which returns the iterator itself. Since all methods in Python are virtual, we
are free to modify how to iterability works in our functions (and classes) the
way we like.

The yield paradigm becomes important in the context of generators,
which are a powerful tool for creating iterators. Generators are like regular
functions but instead of returning a final value in the end, they use the
yield statement to return data during execution. In other words, values are
extracted from the iterator one at time by calling its next () method and
at each of these calls, the yield expression’s value is returned. This happens
until the final call, when a StopIteration is raised:

>>> def f(a):

... while a:

... yield a.pop()

Generators are very robust and efficient and they should considered every
time you deal with a function that returns a sequence or creates a loop. For
example, the following program implements a Fibonacci sequence using the
iterator paradigm:

def fib_generator():

a, b = 0, 1

while True:

yield b

a, b = b, a+b

if __name__ == ’__main__’:

fib = fib_generator()

print(next(fib))

print(next(fib))

print(next(fib))

76 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

print(next(fib))

break vs. continue

The command break, breaks out of the smallest enclosing for or while loop,
and switches control to the statement following the innermost loop in which
the break statement appears (it breaks out of the loop).

In the other hand, continue, continues with the next iteration of the loop,
and switches control to the start of the loop (continues with the next iteration
of the loop).

Loop statements may have an else clause which is executed when the
loop terminates through exhaustion of the list (with for) or when the con-
dition becomes false (with while), but not when the loop is terminated by
a break statement.

The range() Method

This method generates lists containing arithmetic progressions. It is useful
when you need to iterate over a sequence of numbers:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(4, 10)

[4, 5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

The enumerate() Method

Returns a tuple with the item and the index values from an iterable. For
example, we can use enumerate to write our own grep function, which gets a
word and files from the command line and outputs where the word appears:

[general_problems/modules/grep_word_from_files.py]

import sys

4.2. CONTROL FLOW 77

def grep_word_from_files():

word = sys.argv[1]

for filename in sys.argv[2:]:

with open(filename) as file:

for lino, line in enumerate(file, start=1):

if word in line:

print("{0}:{1}:{2:.40}".format(filename, lino,

line.rstrip()))

if __name__ == ’__main__’:

if len(sys.argv) < 2:

print("Usage: grep_word_from_files.py word infile1

[infile2...]")

sys.exit()

else:

grep_word_from_files()

The zip() Method

The zip function takes two or more sequences and creates a new sequence
of tuples where each tuple contains one element from each list:

>>> a = [1, 2, 3, 4, 5]

>>> b = [’a’, ’b’, ’c’, ’d’, ’e’]

>>> zip(a, b)

<zip object at 0xb72d65cc>

>>> list(zip(a,b))

[(1, ’a’), (2, ’b’), (3, ’c’), (4, ’d’), (5, ’e’)]

The filter(function, sequence) Method

This method returns a sequence consisting of those items from the sequence
for which function (item) is true:

>>> def f(x): return x % 2 != 0 and x % 3 != 0

>>> f(33)

False

78 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

>>> f(17)

True

>>> filter(f, range(2, 25))

[5, 7, 11, 13, 17, 19, 23]

The map(function, list) Function

A convenient way of turning a pair of lists into a list of pairs. It applies a
function to every item of an iterable and then returns a list of the results:

>>> def cube(x): return x*x*x

>>> map(cube, range(1, 11))

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

>>> seq = range(8)

>>> def square(x): return x*x

>>> map(None, seq, map(square, seq))

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7,

49)]

The lambda Function

The lambda function is a dynamic way of compacting functions inside the
code. For example, the function:

>>> def area(b, h):

... return 0.5 * b * h

...

>>> area(5,4)

10.0

could be rather written as

>>> area = lambda b, h: 0.5 * b * h

>>> area(5, 4)

10.0

Lambda functions are very useful for creating keys in dictionaries:

>>> import collections

4.3. FILE HANDLING 79

>>> minus_one_dict = collections.defaultdict(lambda: -1)

>>> point_zero_dict = collections.defaultdict(lambda: (0, 0))

>>> message_dict = collections.defaultdict(lambda: "No message")

4.3 File Handling

File handling is very easy in Python. For example, the snippet bellow reads
a file and delete all the blank lines:

[general_problems/modules/remove_blank_lines.py]

import os

import sys

def read_data(filename):

lines = []

fh = None

try:

fh = open(filename)

for line in fh:

if line.strip():

lines.append(line)

except (IOError, OSError) as err:

print(err)

finally:

if fh is not None:

fh.close()

return lines

def write_data(lines, filename):

fh = None

try:

fh = open(filename, "w")

for line in lines:

fh.write(line)

except (EnvironmentError) as err:

print(err)

80 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

finally:

if fh is not None:

fh.close()

def remove_blank_lines():

if len(sys.argv) < 2:

print ("Usage: noblank.py infile1 [infile2...]")

for filename in sys.argv[1:]:

lines = read_data(filename)

if lines:

write_data(lines, filename)

if __name__ == ’__main__’:

remove_blank_lines()

Methods for File Handling

The open(filename, mode) Method:

Returns a file object. The mode argument is optional and read will be
assumed if it is omitted, the other options are:

? r for reading,

? w for writing (an existing file with the same name will be erased),

? a for appending (any data written to the file is automatically added to
the end),

? and r+ for both reading and writing.

fin = open(filename, encoding="utf8")

fout = open(filename, "w", encoding="utf8")

The read(size) Method:

Reads some quantity from the data and returns it as a string. Size is an op-
tional numeric argument, when it is omitted or negative, the entire contents

4.3. FILE HANDLING 81

of the file will be read and returned. If the end of the file has been reached,
read() will return an empty string:

>>> f.read()

’This is the entire file.\n’

>>> f.read()

’ ’

The readline() Method:

Reads a single line from the file. A newline character is left at the end of the
string, and is only omitted on the last line of the file if the file. This makes
the return value unambiguous.

The readlines() Method:

Return a list containing all the lines of data in the file. If given an optional
parameter size, it reads that many bytes from the file and enough more to
complete a line, and returns the lines from that. This is often used to allow
efficient reading of a large file by lines, but without having to load the entire
file in memory. Only complete lines will be returned:

>>> f.readlines()

[’This is the first line of the file.\n’, ’Second line of the

file\n’]

The write() Method:

Writes the contents of a string to the file, returning None. Write bytes/bytear-
ray object to the file if opened in binary mode or a string object if opened
in text mode:

>>> f.write(’This is a test\n’)

The tell() and seek() Methods:

The tell() method returns an integer giving the file object’s current position
in the file, measured in bytes from the beginning of the file.

82 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

To change the file object’s position, use seek(offset, from-what). The
position is computed from adding offset to a reference point and the refer-
ence point is selected by the from-what argument. A from-what value of 0
measures from the beginning of the file, 1 uses the current file position, and
2 uses the end of the file as the reference point.

The close() Method:

Closes the file and free up any system resources taken up by the open file. It
returns True if the file is closed.

The input() Method:

Accepts input from the user. This function takes an optional string argument
(which will be printed in the console), then it will wait for the user to type
in a response and to finish by pressing Enter (or Return).

If the user does not type any text but just presses Enter, the function
returns an empty string; otherwise, it returns a string containing what the
user typed, without any line terminator.

>>> def get_int(msg):

... while True:

... try:

... i = int(input(msg))

... return i

... except ValueError as err:

... print(err)

>>> age = get_int("Enter your age: ")

The peek(n) Method:

Returns n bytes without moving the file pointer position.

The fileno() Method:

Returns the underlying file’s file descriptor (available only for file objects
that have file descriptors).

4.3. FILE HANDLING 83

The shutil Package

This package is useful for manipulating files in the system. For example, the
following snippet gets a file and an extension from the command line and
produces a copy of this file with its extension changed to the given string:

[general_problems/files/change_ext_file.py]

import os

import sys

import shutil

def change_file_ext():

if len(sys.argv) < 2:

print("Usage: change_ext.py filename.old_ext ’new_ext’")

sys.exit()

name = os.path.splitext(sys.argv[1])[0] + "." + sys.argv[2]

print (name)

try:

shutil.copyfile(sys.argv[1], name)

except OSError as err:

print (err)

if __name__ == ’__main__’:

change_file_ext()

The pickle Module

The pickle module can take almost any Python object (even some forms
of Python code!), and convert it to a string representation. This process is
called pickling, where reconstructing the object from the string representation
is called unpickling.

If you have an object x, and a file object f that has been opened for
writing, the simplest way to pickle the object takes only one line of code:

>>> pickle.dump(x, f)

84 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

Then, to unpickle this object:

>>> x = pickle.load(f)

Exporting Data with Pickle

The example below shows an use for pickle:

[general_problems/files/export_pickle.py]

import pickle

def export_pickle(data, filename=’test.dat’, compress=False):

fh = None

try:

if compress:

fh = gzip.open(filename, "wb") # write binary

else:

fh = open(filename, "wb") # compact binary pickle format

pickle.dump(data, fh, pickle.HIGHEST_PROTOCOL)

except(EnvironmentError, pickle.PickingError) as err:

print("{0}: export error:

{1}".format(os.path.basename(sys.argv[0], err)))

return False

finally:

if fh is not None:

fh.close()

def test_export_pickle():

mydict = {’a’: 1, ’b’: 2, ’c’: 3}

export_pickle(mydict)

if __name__ == ’__main__’:

test_export_pickle()

In general, booleans, numbers, and strings, can be pickled as can instances
of classes and built-in collection types (providing they contain only pickable
objects, ı.e., their dict is pickable).

4.3. FILE HANDLING 85

Reading Data with Pickle

The example below shows how to read a pickled data:

[general_problems/files/import.py]

import pickle

def import_pickle(filename):

fh = None

try:

fh = open(filename, "rb")

mydict2 = pickle.load(fh)

return mydict2

except (EnvironmentError) as err:

print ("{0}: import error:

{0}".format(os.path.basename(sys.arg[0]), err))

return false

finally:

if fh is not None:

fh.close()

def test_import_pickle():

pkl_file = ’test.dat’

mydict = import_pickle(pkl_file)

print(mydict)

if __name__ == ’__main__’:

test_import_pickle()

The struct Module

We can convert Python objects to and from suitable binary representation
using struct. This object can handle only strings with a specific length.

86 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

struct allows the creation of a function that takes a string and return a
byte object with an integer length count and a sequence of length count
UTF-8 encoded bytes for the text.

Some methods are: struct.pack() (takes a struct format string and val-
ues and returns a byte object), struct.unpack() (takes a format and a bytes
or bytearray object and returns a tuple of values), and struct.calcsize()

(takes a format and returns how many bytes a struct using the format will
occupy):

>>> data = struct.pack("<2h", 11, -9)

>>> items = struct.unpack("<2h", data) # little endian

4.4 Error Handling in Python

There are two distinguishable kinds of errors when we compile a program in
Python: syntax errors (parsing errors) and exceptions (errors detected during
execution, not unconditionally fatal). While syntax errors will never allow
the program to be compiled, exceptions can only be detected in some cases
and for this reason they should be carefully handled.

Handling Exceptions

When an exception is raised and not handled, Python outputs a traceback
along with the exception’s error message. A traceback (sometimes called a
backtrace) is a list of all the calls made from the point where the unhandled
exception occurred back to the top of the call stack.

We can handle predictable exceptions by using the try-except-finally

paradigm:

try:

try_suite

except exception1 as variable1:

exception_suite1

...

except exceptionN as variableN:

exception_suiteN

4.4. ERROR HANDLING IN PYTHON 87

If the statements in the try block’s suite are all executed without raising
an exception, the except blocks are skipped. If an exception is raised inside
the try block, control is immediately passed to the suite corresponding to the
first matching exception. This means that any statements in the suite that
follow the one that caused the exception will not be executed:

while 1:

try:

x = int(raw_input("Please enter a number: "))

break

except ValueError:

print "Oops! That was no valid number. Try again..."

The raise statement allows the programmer to force a specified exception
to occur:

import string

import sys

try:

f = open(’myfile.txt’)

s = f.readline()

i = int(string.strip(s))

except IOError, (errno, strerror):

print "I/O error(%s): %s" % (errno, strerror)

except ValueError:

print "Could not convert data to an integer."

except:

print "Unexpected error:", sys.exc_info()[0]

raise

We also can use else:

for arg in sys.argv[1:]:

try:

f = open(arg, ’r’)

except IOError:

print ’cannot open’, arg

else:

print arg, ’has’, len(f.readlines()), ’lines’

f.close()

88 CHAPTER 4. PYTHON’S STRUCTURE AND MODULES

The Google Python Style Guide for Exceptions

Exceptions must be used carefully and must follow certain conditions:

? Raise exceptions like this: raise MyException(’Error message’) or
raise MyException. Do not use the two-argument form.

? Modules or packages should define their own domain-specific base ex-
ception class, which should be inherit from the built-in Exception class.
The base exception for a module should be called Error.

class Error(Exception):

pass

? Never use catch-all except: statements, or catch Exception or StandardError,
unless you are re-raising the exception or in the outermost block in your
thread (and printing an error message).

? Minimize the amount of code in a try/except block. The larger the
body of the try, the more likely that an exception will be raised by
a line of code that you didn’t expect to raise an exception. In those
cases, the try/except block hides a real error.

? Use the finally clause to execute code whether or not an exception is
raised in the try block. This is often useful for clean-up, i.e., closing a
file.

? When capturing an exception, use as rather than a comma. For exam-
ple:

try:

raise Error

except Error as error:

pass

Chapter 5

Object-Oriented Design

Suppose we want to define an object in Python to represent a circle. We
could remember about Python’s collections module and create a named
tuple for our circle:

>>> circle = collections.namedtuple("Circle", "x y radius")

>>> circle

<class ’__main__.Circle’>

>>> circle = circle(13, 84, 9)

>>> circle

Circle(x=13, y=84, radius=9)

However, many things are missing here. First, there are no guarantees
that anyone who uses our circle data is not going to type an invalid input
value, such as a negative number for the radius. Second, how could we also
associate to our circle some operations that are proper from it, such as its
area or perimeter?

For the first problem, we can see that the inability to validate when cre-
ating an object is a really bad aspect of taking a purely procedural approach
in programming. Even if we decide to include many exceptions handling the
invalid inputs for our circles, we still would have a data container that is not
intrinsically made and validated for its real purpose. Imagine now if we had
chosen a list instead of the named tuple, how would we handle the fact that
lists have sorting properties?

It is clear from the example above that we need to find a way to create
an object that has only the proprieties that we expect it to have. In other
words, we want to find a way to package data and restrict its methods. That

89

90 CHAPTER 5. OBJECT-ORIENTED DESIGN

is what object-oriented programming allows you to do: to create your own
custom data type, which in this example would be a circle class.

5.1 Classes and Objects

Classes are the way we can gather special predefined data and methods to-
gether. We use them by creating objects, which are instances of a particular
class. The simplest form of a class in Python looks like the following snippet:

class ClassName:

<statement-1>

.g

<statement-N>

>>> x = ClassName() # class instantiation

Class Instantiation

Class instantiation uses function notation to create objects in a known ini-
tial state. The instantiation operation creates an empty object which has
individuality. However, multiple names (in multiple scopes) can be bound to
the same object (also know as aliasing). In Python, when an object is cre-
ated, first the special method new () is called (the constructor) and then
init () initializes it.

Attributes

Objects have the attributes from their Classes, which are methods and data.
Method attributes are functions whose first argument is the instance on which
it is called to operate (which in Python is conventionally called self).

Attributes are any name following a dot. References to names in modules
are attribute references: in the expression modname.funcname, modname is
a module object and funcname is one of its attribute. Attributes may be
read-only or writeable. Writeable attributes may be deleted with the del

statement.

5.2. PRINCIPLES OF OOP 91

Namespaces

A namespace is a mapping from names to objects. Most namespaces are
currently implemented as Python dictionaries. Examples of namespaces are:
the set of built-in names, the global names in a module, and the local names in
a function invocation. The statements executed by the top-level invocation of
the interpreter, either reading from a script file or interactively, are considered
part of a module called main , so they have their own global namespace.

Scope

A scope is a textual region of a Python program where a namespace is di-
rectly accessible. Although scopes are determined statically, they are used
dynamically. Scopes are determined textually: the global scope of a function
defined in a module is that module’s namespace. When a class definition is
entered, a new namespace is created, and used as the local scope.

5.2 Principles of OOP

Specialization

Specialization (or inheritance) is the procedure of creating a new class that
inherits all the attributes from the super class (also called base class). Any
method can be overridden (reimplemented) in a subclass (in Python, all
methods are virtual). Inheritance is described as an is-a relationship.

Furthermore Google Python Style Guide advices that if a class inherits
from no other base classes, we should explicitly inherit it from Python’s
highest class, object:

class OuterClass(object):

class InnerClass(object):

Polymorphism

Polymorphism (or dynamic method binding) is the principle where methods
can be redefined inside subclasses. In other words, if we have an object
of a subclass and we call a method that is also defined in the superclass,

92 CHAPTER 5. OBJECT-ORIENTED DESIGN

Python will use the method defined in the subclass. If, for instance, we need
to recover the superclass’s method, we can easily call it using the built-in
super().

For example, all instances of a custom class are hashable by default in
Python. This means that the hash() attribute can be called, allowing them
to be used as dictionary keys and to be stored in sets. However, if we reim-
plement the attribute eq (), we change this propriety (what can result on
our instances no longer being hashable).

Aggregation

Aggregation (or composition) defines the process where a class includes one of
more instance variables that are from other classes. It is a has-a relationship.
In Python, every class uses inheritance (they are all custom classes from the
object base class), and most use aggregation since most classes have instance
variables of various types.

A first Example of a Class

We now have the tools for writing our first class in Python. The example
bellow illustrate how we could write a circle data container1. using the object-
oriented design paradigm. First, we created a class called Point with general
data and methods attributes. Then we use inheritance to create a Circle
subclass from it:

[general_problems/oop/ShapeClass.py]

import math

class Point:

def __init__(self, x = 0, y = 0):

self.x = x # data attribute

self.y = y

def distance_from_origin(self): # method attribute

return math.hypot(self.x, self.y)

1 containers, which is a generic data structure that permits storage and retrieval of
data items independent of content.

5.2. PRINCIPLES OF OOP 93

def __eq__(self, other):

return self.x == other.x and self.y == other.y

def __repr__(self):

return "point ({0.x!r}, {0.y!r})".format(self)

def __str__(self):

return "({0.x!r}, {0.y!r})".format(self)

class Circle(Point):

def __init__(self, radius, x=0, y=0):

super().__init__(x,y) # creates/initializes

self.radius = radius

def edge_distance_from_origin(self):

return abs(self.distance_from_origin() - self.radius)

def area(self):

return math.pi*(self.radius**2)

def circumference(self):

return 2*math.pi*self.radius

def __eq__(self, other): # avoid infinite recursion

return self.radius == other.radius and super().__eq__(other)

def __repr__(self):

return "circle ({0.radius!r}, {0.x!r})".format(self)

def __str__(self):

return repr(self)

>>> import ShapeClass as shape

>>> a = shape.Point(3,4)

>>> a

point (3, 4)

>>> repr(a)

’point (3, 4)’

>>> str(a)

94 CHAPTER 5. OBJECT-ORIENTED DESIGN

’(3, 4)’

>>> a.distance_from_origin()

5.0

>>> c = shape.Circle(3,2,1)

>>> c

circle (3, 2)

>>> repr(c)

’circle (3, 2)’

>>> str(c)

’circle (3, 2)’

>>> c.circumference()

18.84955592153876

>>> c. edge_distance_from_origin()

0.7639320225002102

5.3 Python Design Patterns

Design patterns are an attempt to bring a formal definition for correctly
designed structures to software engineering. There are many different design
patterns to solve different general problems.

Decorator Pattern

Decorators (also know as the @ notation) are a tool to elegantly specify some
transformation on functions and methods. The decorator pattern allows us
to wrap an object that provides core functionality with other objects that
alter that functionality. For example, the snippet bellow was copied from
the Google Python Style guide:

class C(object):

def method(self):

method = my_decorator(method)

can be written as

class C(object):

@my_decorator

5.3. PYTHON DESIGN PATTERNS 95

def method(self):

A full example of a decorator, for a custom benchmarking function, is
shown bellow, :

[general_problems/oop/do_benchmark.py]

import random

def benchmark(func):

import time

def wrapper(*args, **kwargs):

t = time.clock()

res = func(*args, **kwargs)

print("\t%s" % func.__name__, time.clock()-t)

return res

return wrapper

@benchmark

def random_tree(n):

temp = [n for n in range(n)]

for i in range(n+1):

temp[random.choice(temp)] = random.choice(temp)

return temp

if __name__ == ’__main__’:

random_tree(10000)

"""

python3 do_benchmark.py

random_tree 0.04999999999999999

"""

The most common decorators are @classmethod and @staticmethod, for
converting ordinary methods to class or static methods.

96 CHAPTER 5. OBJECT-ORIENTED DESIGN

Observer Pattern

The observer pattern is useful when we want to have a core object that
maintains certain values, and then having some observers to create serialized
copies of that object. This can be implemented by using the @properties

decorator, placed before our functions (before def). This will control at-
tribute access, for example, to make an attribute to be read-only. Properties
are used for accessing or setting data instead of simple accessors or setters:

@property

def radius(self):

return self.__radius

Singleton Pattern

A class follows the singleton pattern if it allows exactly one instance of a
certain object to exist. Since Python does not have private constructors,
we use the new class method to ensure that only one instance is ever
created. When we override it, we first check whether our singleton instance
was created. If not, we create it using a super class call:

>>> class SinEx:

... _sing = None

... def __new__(self, *args, **kwargs):

... if not self._sing:

... self._sing = super(SinEx, self).__new__(self, *args,

**kwargs)

... return self._sing

>>> x = SinEx()

>>> x

<__main__.SinEx object at 0xb72d680c>

>>> y = SinEx()

>>> x == y

True

>>> y

<__main__.SinEx object at 0xb72d680c>

5.4. ADDITIONAL EXERCISES 97

The two objects are equal and are in the same address, so they are the
same object.

5.4 Additional Exercises

A Hash Table Class

The example bellow shows how to create a map abstract data with two lists:

[general_problems/oop/Hash_Table.py]

class HashTable:

def __init__(self):

self.size = 11

self.slots = [None] * self.size

self.data = [None] * self.size

def put(self,key,data):

hashvalue = self.hashfunction(key,len(self.slots))

if self.slots[hashvalue] == None:

self.slots[hashvalue] = key

self.data[hashvalue] = data

else:

if self.slots[hashvalue] == key:

self.data[hashvalue] = data

else:

nextslot = self.rehash(hashvalue,len(self.slots))

while self.slots[nextslot] != None and \

self.slots[nextslot] != key:

nextslot = self.rehash(nextslot,len(self.slots))

if self.slots[nextslot] == None:

self.slots[nextslot]=key

self.data[nextslot]=data

else:

self.data[nextslot] = data

98 CHAPTER 5. OBJECT-ORIENTED DESIGN

def hashfunction(self,key,size):

return key%size

def rehash(self,oldhash,size):

return (oldhash+1)%size

def get(self,key):

startslot = self.hashfunction(key,len(self.slots))

data = None

stop = False

found = False

position = startslot

while self.slots[position] != None and \

not found and not stop:

if self.slots[position] == key:

found = True

data = self.data[position]

else:

position=self.rehash(position,len(self.slots))

if position == startslot:

stop = True

return data

def __getitem__(self,key):

return self.get(key)

def __setitem__(self,key,data):

self.put(key,data)

def test_HashTable(module_name=’this module’):

H = HashTable()

H[54]="buffy"

H[26]="xander"

H[17]="giles"

print(H.slots)

print(H.data)

5.4. ADDITIONAL EXERCISES 99

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_HashTable()

100 CHAPTER 5. OBJECT-ORIENTED DESIGN

Chapter 6

Advanced Topics

6.1 Multiprocessing and Threading

Each program in the operational system is a separate process. Each process
has one or more threads. If a process has several threads, they appear to
run simultaneously. Two approaches can be used to spread the workload in
programs:

Multiple processes Multiple processes have separate regions of memory
and can only communicate by special mechanisms. The processor loads
and saves a separate set of registers for each thread. It is inconve-
nient for communication and data sharing. This is handled by the
subprocess module.

Multiple threads Multiple threads in a single process have access to the
same memory. They communicate simply by sharing data, provid-
ing ensure of one thread at time, handled by the threading module.
Threads share the process’s resources, including the heap space. But
each thread still has it own stack.

Although Python has a threading mechanism, it does not support true
parallel execution. However, it is possible is to use parallel processes, which
in modern operating systems are really efficient.

101

102 CHAPTER 6. ADVANCED TOPICS

The subprocess Module

Used to create a pair of “parent-child” programs. The parent program is
started by the user and this in turn runs instances of the child program, each
with different work to do. Using child processing allow us to take maximum
advantage of multicore processor and leaves concurrency issues to be handled
by the operational system.

The threading Module

The complexity arises when we want to separate threads to share data, and
we need to be careful with a policy for locks and for avoiding deadlocks. Each
Python program has at least one thread, the main thread. To create multiple
threads we use the threading module:

? calling threading.thread() and passing a callable object,

? calling threading.threadclass and threading.threadsubclass.

The queue.queue class can handle all the locking internally: we can rely
on it to serialize accesses, meaning that only one thread at time has access
to the data (FIFO). The program will not terminate while it has any threads
running.

It might create a problem since once the worker threads have done their
work, they are finished but they are technically still running. The solu-
tion is to transform threads into daemons. In this case, the program will
terminate as soon as there is no daemon threads running. The method
queue.queue.join() blocks the end until the queue is empty.

Mutexes and Semaphores

A mutex is like a lock. Mutexes are used in parallel programming to ensure
that only one thread can access a shared resource at a time. For example,
say one thread is modifying an array. When it has gotten halfway through
the array, the processor switches to another thread. If we were not using
mutexes, the thread could try to modify the array as well, at the same time.

Conceptually, a mutex is an integer that starts at 1. Whenever a thread
needs to alter the array, it “locks” the mutex. This causes the thread to wait
until the number is positive and then decreases it by one. When the thread

6.2. GOOD PRACTICES 103

is done modifying the array, it “unlocks” the mutex, causing the number to
increase by 1. If we are sure to lock the mutex before modifying the array
and to unlock it when we are done, then we know that no two threads will
modify the array at the same time.

Semaphores are more general than mutexes. A semaphore’s integer may
start at a number greater than 1. The number at which a semaphore starts
is the number of threads that may access the resource at once. Semaphores
support “wait” and “signal” operations, which are analogous to the “lock”
and “unlock” operations of mutexes.

Deadlock and Spinlock

Deadlock is a problem that sometimes arises in parallel programming, when
two threads are stuck indefinitely. We can prevent deadlock if we assign an
order to our locks and require that locks will always be acquired in order
(this is a very general and not precise approach).

Spinlock is a form of busy waiting, that can be useful for high-performance
computing (HPC) (when the entire system is dedicated to a single application
and exactly one thread per core). It takes less time than a semaphore.

The Google Python Style Guide for Threading

Do not rely on the atomicity of built-in types (data types such as dictionaries
appear to have atomic operations, but they are actually based on private
methods such as hash or eq). Queue module’s data type as the
preferred way to communicate data between threads. Otherwise, use the
threading module and its locking primitives.

6.2 Good Practices

Virtual Environments

The more projects you have, the more likely it is that you will be working
with different versions of Python itself, or at least different versions of Python
libraries. For this reason, we use virtual environments (virtualenvs or venvs).

104 CHAPTER 6. ADVANCED TOPICS

Virtualenv

Following http://docs.python-guide.org/en/latest/dev/virtualenvs/:

Create a virtual environment:

$ virtualenv venv

To begin using the virtual environment, it needs to be activated:

$ source venv/bin/activate

If you are done working in the virtual environment for the moment,

you can deactivate it:

$ deactivate

To delete a virtual environment, just delete its folder.

Virtualenvwrapper

Virtualenvwrapper provides a set of commands and also places all your vir-
tual environments in one place. Following http://virtualenvwrapper.com:

$ pip install virtualenvwrapper

In your bashrc file:

export WORKON_HOME=$HOME/.virtualenvs

export PROJECT_HOME=$HOME/Devel

source /usr/local/bin/virtualenvwrapper.sh

Basic Usage:

Create a virtual environment:

$ mkvirtualenv test

Check if it is working:

$ which python

Work on a virtual environment:

$ workon test

Deactivating is still the same:

$ deactivate

http://docs.python-guide.org/en/latest/dev/virtualenvs
http://virtualenvwrapper.com

6.2. GOOD PRACTICES 105

To delete:

$ rmvirtualenv test

Check the configuration:

$ pip freeze

Other useful commands

lsvirtualenvList

cdvirtualenv

cdsitepackages

lssitepackages

Debugging

The Python debugger, pdb, can be found at http://pymotw.com/2/pdb/.

Interactive Running:

If you have some code in a source file and you want to explore it interactively,
you can run Python with the -i switch, like this: python -i example.py.

It also can be used in the command line:

>>> python3 -m pdb program.py

or added as a module as the first statement of the function we want to
examine:

import pdb

pdb.set_trace()

To perform the inspection, type: s for step, p for point, and n for next
line, list to see the next 10 lines, and help for help.

Profiling

If a program runs very slowly or consumes far more memory than expected,
the problem is most often due to our choice of algorithms or data structures

http://pymotw.com/2/pdb/

106 CHAPTER 6. ADVANCED TOPICS

or due to some inefficient implementation. Some performance verification:

? prefer tuples to list with read-only data;

? use generators rather than large lists or tuples to iteration;

? when creating large strings out of small strings, instead of concatenat-
ing the small, accumulate them all in a list and join the list of strings
in the end. A good examples is given by the Google Python Style guide:

[Good]

items = [’<table>’]

for last_name, first_name in employee_list:

items.append(’<tr><td>%s, %s</td></tr>’ % (last_name,

first_name))

items.append(’</table>’)

employee_table = ’’.join(items)

[Bad]

employee_table = ’<table>’

for last_name, first_name in employee_list:

employee_table += ’<tr><td>%s, %s</td></tr>’ % (last_name,

first_name)

employee_table += ’</table>’

The cProfile Package:

Provides a detailed breakdown of call times and can be used to find perfor-
mance bottlenecks.

import cProfile

cProfile.run(’main()’)

You can run it by typing:

$ python3 -m cProfile - o profile.day mymodule.py

$ python3 -m pstats

6.3. UNIT TESTING 107

The timeit Package:

Used for timing small pieces of the code:

>>> import timeit

>>> timeit.timeit("x = 2 + 2")

0.034976959228515625

>>> timeit.timeit("x = sum(range(10))")

0.92387008666992188

> python -m timeit -s "import mymodule as m" "m.myfunction()"

The following code shows a simple example of how to time a function:

[general_problems/modules/using_time_module.py]

import time

def sumOfN2(n):

’’’ a simple example of how to time a function ’’’

start = time.time()

theSum = 0

for i in range(1,n+1):

theSum = theSum + i

end = time.time()

return theSum,end-start

if __name__ == ’__main__’:

n = 5

print("Sum is %d and required %10.7f seconds"%sumOfN2(n))

n = 200

print("Sum is %d and required %10.7f seconds"%sumOfN2(n))

6.3 Unit Testing

It is good practice to write tests for individual functions, classes, and meth-
ods, to ensure they behave to the expectations. Python’s standard library
provides two unit testing modules: doctest and unittest. There are also
third part testing tools: nose and py.test.

108 CHAPTER 6. ADVANCED TOPICS

Test Nomenclature

Test fixtures The code necessary to set up a test (for example, creating an
input file for testing and deleting afterwards).

Test cases The basic unit of testing.

Test suites Collection of test cases, created by the subclass unittest.testcase,
where each method has a name beginning with “test”.

Test runner An object that executes one of more test suites.

doctest

Use it when writing the tests inside the modules and functions’ docstrings.
Then just add three line in the end:

if __name__ = "__main__"

import doctest

doctest.testmod()

To run the program’s doctest, there are two approaches:

? Importing the doctest module and then run the program:

$ python3 program.py -v

? Creating a separate test program using the unittest module, which is
modeled on Java’s JUnit unittesting library.

import doctest

import unittest

import module_to_be_tested

suite = unittest.testsuite()

suite.addtest(doctest.doctestsuite(module_to_be_tested)

runner = unittest.testtestrunner()

print(runner.run(suite))

6.3. UNIT TESTING 109

pytest

Very easy to use: just include a function that starts with test in a file that
starts with test:

Install with:

pip install pytest

Example:

def func(x):

return x + 1

def test_answer():

assert func(3) == 51

Run with

py.test

python -m pytest

In case of more than one test:

py.test -q test_class.py

Create a pytest standalone script:

py.test --genscript=runtests.py

Dropping to pdb:

py.test --pdb

\begin

110 CHAPTER 6. ADVANCED TOPICS

Part II

Algorithms are Fun! It’s time
to add some sauce into our

flight! In this second part we
will learn how to make the

computer become our awesome
spaceship!

111

Chapter 7

Abstract Data Structures

An abstract data type (ADT) is a mathematical model for a certain class of
data structures that have similar behavior. Different classes of abstract data
types have many different but functionally equivalent data structures that
implement them.

Data structures can be classified as either contiguous or linked, depend-
ing whether they are based on arrays or pointers. In Python, for instance,
contiguously-allocated structures (composed of single slabs of memory) in-
clude strings, lists, tuples, and dictionaries. In the following sections we will
see examples of some more specialized continuous structures and examples
of some linked data structures (distinct chunks of memory bound together
by pointers).

7.1 Stacks

A stack is a linear data structure that can be accessed only at one of its
ends (which we will refers as the top) for either storing or retrieving. In
other words, array access of elements in a stack is restricted and they are an
example of a last-in-first-out (LIFO) structure. You can think of a stack as a
huge pile of books on your desk. Stacks need to have the following operations
running at O(1):

push Insert an item at the top of the stack.

pop Remove an item from the top of the stack.

113

114 CHAPTER 7. ABSTRACT DATA STRUCTURES

top/peek Look up the element on the top.

empty/size Check whether the stack is empty or return its size.

Stacks in Python can be implemented with lists and the methods append()
and pop() (without an explicit index):

[adt/stacks/stack.py]

class Stack(list):

’’’ define the stack class ’’’

def __init__(self):

self.items = []

def isEmpty(self):

return self.items == []

def push(self, items):

self.items.append(items)

def pop(self):

if not self.isEmpty():

return self.items.pop()

else:

raise Exception(’Stack is empty!’)

def peek(self):

return self.items[-1]

def size(self):

return len(self.items)

def main():

stack = Stack()

stack.push(1)

stack.push(2)

stack.push(3)

print(stack.size())

print(stack.peek())

print(stack.pop())

print(stack.peek())

7.1. STACKS 115

if __name__ == ’__main__’:

main()

Another approach we can use to implement a stack (or any abstract struc-
ture) is by thinking of it as a container of nodes (objects) following a LIFO
order:1

class Node(object):

def __init__(self, value=None):

self.value = value

self.next = None

and then building the stack as a collection of nodes:

[adt/stacks/linked_stack.py]

class Node(object):

def __init__(self, value=None):

self.value = value

self.next = None

class StackwithNodes(object):

’’’ Define a Stack with nodes’’’

def __init__(self):

self.top = None

def isEmpty(self):

return bool(self.top)

def pop(self):

node = self.top

if node:

self.top = node.next

return node.value

else:

raise Exception(’Stack is empty.’)

def push(self, value):

1We will use similar a Node Class in many examples in the rest of these notes.

116 CHAPTER 7. ABSTRACT DATA STRUCTURES

node = Node(value)

node.next = self.top

self.top = node

def size(self):

node = self.top

if node not None: num_nodes = 1

else: return 0

node = node.next

while node:

num_nodes += 1

node = node.next

return num_nodes

def peek(self):

return self.top.value

def main():

stack = StackwithNodes()

stack.push(1)

stack.push(2)

stack.push(3)

print(stack.size())

print(stack.peek())

print(stack.pop())

print(stack.peek())

if __name__ == ’__main__’:

main()

Stacks are suitable for depth-first traversal algorithms in graphs, as we
will see in future chapters.

7.2 Queues

A queue, differently of a stack, is a structure where the first enqueued element
(at the back) will be the first one to be dequeued (when it is at the front),

7.2. QUEUES 117

i.e., a queue is a first-in-first-out (FIFO) structure. You can think of a queue
as a line of people waiting for a roller-coaster ride. Array access of elements
in queues is also restricted and queues should have the following operations
running at O(1):

enqueue Insert an item at the back of the queue.

dequeue Remove an item from the front of the queue.

peek/front Retrieve an item at the front of the queue without removing it.

empty/size Check whether the queue is empty or give its size.

The example bellow shows a class for a queue in Python:

[adt/queues/queue.py]

class Queue(object):

’’’ a class for a queue ’’’

def __init__(self):

self.items = []

def isEmpty(self):

return self.items == []

def enqueue(self, item):

self.items.insert(0, item)

def dequeue(self):

return self.items.pop()

def size(self):

return len(self.items)

def peek(self):

if not self.isEmpty():

return self.items[-1]

else:

raise Exception(’Queue is empty.’)

def size(self):

return len(self.items)

118 CHAPTER 7. ABSTRACT DATA STRUCTURES

def main():

queue = Queue()

queue.enqueue(1)

queue.enqueue(2)

queue.enqueue(3)

print(queue.size())

print(queue.peek())

print(queue.dequeue())

print(queue.peek())

if __name__ == ’__main__’:

main()

However, we have learned that the method insert() for lists in Python
is very inefficient (remember, lists only work on O(1) when we append or pop
at/from their end, because otherwise all of the other elements would have to
be shifted in memory). We can be smarter than that and write an efficient
queue using two stacks (two lists) instead of one:

[adt/queues/queue_from_two_stacks.py]

class Queue(object):

’’’ an example of a queue implemented from 2 stacks ’’’

def __init__(self):

self.in_stack = []

self.out_stack = []

def enqueue(self, item):

return self.in_stack.append(item)

def dequeue(self):

if self.out_stack:

return self.out_stack.pop()

while self.in_stack:

self.out_stack.append(self.in_stack.pop())

if not self.out_stack:

raise Exception("Queue empty!")

return self.out_stack.pop()

7.2. QUEUES 119

def size(self):

return len(self.in_stack) + len(self.out_stack)

def peek(self):

if self.out_stack:

return self.out_stack[-1]

while self.in_stack:

self.out_stack.append(self.in_stack.pop())

if self.out_stack:

return self.out_stack[-1]

else:

return None

def main():

queue = Queue()

queue.enqueue(1)

queue.enqueue(2)

queue.enqueue(3)

print(queue.size())

print(queue.peek())

print(queue.dequeue())

print(queue.peek())

if __name__ == ’__main__’:

main()

Another approach is to implement a queue as a container for nodes, as
we have done for stacks, but now the nodes are inserted and removed in a
FIFO order:

[adt/queues/linked_queue.py]

class Node(object):

def __init__(self, value):

self.value = value

self.next = None

class LinkedQueue(object):

120 CHAPTER 7. ABSTRACT DATA STRUCTURES

’’’ Queue acts as a container for nodes (objects) that are

inserted and removed according FIFO’’’

def __init__(self):

self.front = None

self.back = None

def isEmpty(self):

return bool(self.front) and bool(self.back)

def dequeue(self):

if self.front:

value = self.front.value

self.front = self.front.next

return value

raise Exception(’Queue is empty, cannot dequeue.’)

def enqueue(self, value):

node = Node(value)

if self.front:

self.back.next = node

else:

self.front = node

self.back = node

return True

def size(self):

node = self.front

if node:

num_nodes = 1

node = node.next

while node:

num_nodes += 1

node = node.next

return num_nodes

def peek(self):

return self.front.value

def main():

queue = LinkedQueue()

7.3. DEQUES 121

queue.enqueue(1)

queue.enqueue(2)

queue.enqueue(3)

print(queue.size())

print(queue.peek())

print(queue.dequeue())

print(queue.peek())

if __name__ == ’__main__’:

main()

Queues are necessary for breath-first traversal algorithms for graphs, as
we will see in future chapters.

7.3 Deques

A deque is a double-ended queue, which can roughly be seen as an union of
a stack and a queue:

[adt/queues/dequeue.py]

class Deque(object):

’’’ a class for a double ended queue ’’’

def __init__(self):

self.items = []

def isEmpty(self):

return self.items == []

def addFront(self, item):

self.items.append(item)

def addRear(self, item):

self.items.insert(0, item)

def removeFront(self):

return self.items.pop()

122 CHAPTER 7. ABSTRACT DATA STRUCTURES

def removeRear(self):

return self.items.pop(0)

def size(self):

return len(self.items)

def __repr__(self):

return ’{}’.format(self.items)

def main():

dq = Deque()

dq.addFront(1)

dq.addFront(2)

dq.addFront(3)

dq.addRear(40)

dq.addRear(50)

print(dq.size())

print(dq)

if __name__ == ’__main__’:

main()

We see again the problem of inserting/removing items in Python’s lists
in any positions that are not the end. The good news is that Python is
your friend and its collections.deque gives us an efficient deque, with fast
appending and popping from both ends:

>>> from collections import deque

>>> q = deque(["buffy", "xander", "willow"])

>>> q

deque([’buffy’, ’xander’, ’willow’])

>>> q.append("giles")

>>> q

deque([’buffy’, ’xander’, ’willow’, ’giles’])

>>> q.popleft()

’buffy’

>>> q.pop()

’giles’

>>> q

deque([’xander’, ’willow’])

7.4. PRIORITY QUEUES AND HEAPS 123

>>> q.appendleft(’angel’)

>>> q

deque([’angel’, ’xander’, ’willow’])

Note that we can also specify the size of our deque. For example, we
could have written q = deque(maxlen = 4) in the example above. Another
interesting method for deques is rotate(n), which rotated the deque n steps
to the right or, if n is negative, to the left.

Interestingly, deques in Python are based on a doubly linked list,2 not in
dynamic arrays. It means that operations such as inserting an item anywhere
are fast (O(1)), but arbitrary index accessing can be slow (O(n)).

7.4 Priority Queues and Heaps

A priority queue is an abstract data type which is similar to a regular queue
or stack, but where each element has a priority associated with it. If two
elements have the same priority, they are served according to their order in
the queue.

A sensible implementation of a priority queue is given by a heap data
structure and we will use it for most of our examples.

Heaps

Conceptually, a heap is a binary tree where each node is smaller (larger) than
its children. We will learn about trees in the next chapters but we should
already keep in mind that when modifications are made in a balanced tree, we
can repair its structure with O(logn) runtimes. Heaps are generally useful
for applications that repeatedly access the smallest (largest) element in the
list. Moreover, min-(max-)heap will let you to find the smallest (largest)
element in O(1) and to extract/add/replace it in O(lnn).

2Linked lists are another abstract data structure that we will learn about at the end
of this chapter. Doubly here means that their nodes have links to the next and to the
previous node.

124 CHAPTER 7. ABSTRACT DATA STRUCTURES

Python’s heapq Package

A very efficient heap implementation in Python is given by the heapq mod-
ule, which provides functions to insert and remove items while keeping the
sequence as a heap.

We can use the heapq.heapify(x) method to transform a list into a
heap, in-place, and in O(n) time:

>>> list1 = [4, 6, 8, 1]

>>> heapq.heapify(list1)

>>> list1

[1, 4, 8, 6]

Once we have a heap, the heapq.heappush(heap, item) method is used
to push the item onto it:

>>> import heapq

>>> h = []

>>> heapq.heappush(h, (1, ’food’))

>>> heapq.heappush(h, (2, ’have fun’))

>>> heapq.heappush(h, (3, ’work’))

>>> heapq.heappush(h, (4, ’study’))

>>> h

[(1, ’food’), (2, ’have fun’), (3, ’work’), (4, ’study’)]

The method heapq.heappop(heap) is used to pop and return the smallest
item from the heap:

>>> list1

[1, 4, 8, 6]

>>> heapq.heappop(list1)

1

>>> list1

[4, 6, 8]

The method heapq.heappushpop(heap, item) is used to push the item
on the heap, then it pops and returns the smallest item from the heap. In
a similar way, heapq.heapreplace(heap, item) will pop and return the
smallest item from the heap, and then push the new item. The heap size
does not change in any of these methods and they are more efficient than
using each method separately.

7.4. PRIORITY QUEUES AND HEAPS 125

In addition, many operations can be made using the heap’s propriety. For
example heapq.merge(*iterables) will merge multiple sorted inputs into
a single sorted output (returning a iterator):

>>> for x in heapq.merge([1,3,5],[2,4,6]):

... print(x,end="\n")

...

1

2

3

4

5

6

The methods heapq.nlargest(n, iterable[, key]) and heapq.nsmallest(n,

iterable[, key]) will return a list with the n largest and smallest elements
from the dataset defined by iterable.

A Class for a Heap

If we want to write ourselves a class for a heap, the fist thing to do is defining
a method to create the heap propriety (heapify). The following code does
that, implementing a max-heap for a given list:

[heap/heapify.py]

class Heapify(object):

def __init__(self, data=None):

self.data = data or []

for i in range(len(data)//2, -1, -1):

self.__max_heapify__(i)

def __repr__(self):

return ’{}’.format(self.data)

def parent(self, i):

return i >> 1

def left_child(self, i):

126 CHAPTER 7. ABSTRACT DATA STRUCTURES

return (i << 1) + 1

def right_child(self, i):

return (i << 1) + 2 # +2 instead of +1 because it’s

0-indexed.

def __max_heapify__(self, i):

largest = i

left = self.left_child(i)

right = self.right_child(i)

n = len(self.data)

largest = (left < n and self.data[left] > self.data[i]) and

left or i

largest = (right < n and self.data[right] >

self.data[largest]) and right or largest

if i is not largest:

self.data[i], self.data[largest] = self.data[largest],

self.data[i]

self.__max_heapify__(largest)

def extract_max(self):

n = len(self.data)

max_element = self.data[0]

self.data[0] = self.data[n - 1]

self.data = self.data[:n - 1]

self.__max_heapify__(0)

return max_element

def test_Heapify():

l1 = [3, 2, 5, 1, 7, 8, 2]

h = Heapify(l1)

assert(h.extract_max() == 8)

print ("Tests Passed!")

if __name__ == ’__main__’:

test_Heapify()

7.4. PRIORITY QUEUES AND HEAPS 127

A Class for a Priority Queue

To conclude this section, the following example shows how to use the heapq

package to implement a priority queue class:

[heap/PriorityQueueClass.py]

import heapq

class PriorityQueue(object):

’’’ implements a priority queue class ’’’

def __init__(self):

self._queue = []

self._index = 0 # comparying same priority level

def push(self, item, priority):

heapq.heappush(self._queue, (-priority, self._index, item))

self._index += 1

def pop(self):

return heapq.heappop(self._queue)[-1]

class Item:

def __init__(self, name):

self.name = name

def __repr__(self):

return "Item({!r})".format(self.name)

def test_PriorityQueue():

’’’ push and pop are all O(logN) ’’’

q = PriorityQueue()

q.push(Item(’test1’), 1)

q.push(Item(’test2’), 4)

q.push(Item(’test3’), 3)

assert(str(q.pop()) == "Item(’test2’)")

print(’Tests passed!’.center(20,’*’))

if __name__ == ’__main__’:

test_PriorityQueue()

128 CHAPTER 7. ABSTRACT DATA STRUCTURES

7.5 Linked Lists

A linked list is like a stack (elements added to the head) or a queue (elements
added to the tail), except that we can peek any element in the structure on
O(1), not only the elements at the ends. In general, a linked list is simply a
linear list of nodes containing a value and a pointer (a reference) to the next
node (except for the last), where the reference points to None:

>>> class Node(object):

... def __init__(self, value=None, next=None):

... self.value = value

... self. next = next

>>> L = Node("a", Node("b", Node("c", Node("d"))))

>>> L.next.next.value

’c’

We can adapt this node class accept some get and set methods:

class Node(object):

def __init__(self, value):

self.value = value

self.next = None

def getData(self):

return self.value

def getNext(self):

return self.next

def setData(self, newdata):

self.value = newdata

def setNext(self, newnext):

self.next = newnext

We obtain a LIFO linked list as a collection of these nodes:

[adt/linked_lists/likedlist_lifo.py]

class Node(object):

def __init__(self, value = None, next = None):

7.5. LINKED LISTS 129

self.value = value

self.next = next

class LinkList(object):

def __init__(self):

self.head = None

self.lenght = 0

def addNode(self, value):

temp = self.head

node = Node(value)

node.next = temp

self.head = node

self.lenght += 1

def printList(self):

node = self.head

while node:

print(node.value)

node = node.next

def deleteNode(self, index):

prev = None

node = self.head

i = 0

while node and i<index:

prev = node

node = node.next

i += 1

if index == i:

self.lenght -= 1

if prev == None:

self.head = node.next

else:

prev.next = node.next

else:

print(’Index not found’)

def main():

130 CHAPTER 7. ABSTRACT DATA STRUCTURES

ll = LinkList()

print(ll.lenght)

ll.addNode(1)

ll.addNode(2)

ll.addNode(3)

print(ll.lenght)

ll.printList()

ll.deleteNode(4)

ll.printList()

print(ll.lenght)

if __name__ == ’__main__’:

main()

We can also write a class for FIFO linked list:

[adt/linked_lists/likedlist_fifo.py]

class Node(object):

def __init__(self, value = None, next = None):

self.value = value

self.next = next

class LinkList(object):

def __init__(self):

self.head = None

self.tail = None

self.length = 0

def addNode(self, value):

node = Node(value)

if not self.head:

self.head = node

if self.tail:

self.tail.next = node

self.tail = node

self.length += 1

def printList(self):

node = self.head

7.5. LINKED LISTS 131

while node:

print(node.value)

node = node.next

def deleteNode(self, index):

prev = None

node = self.head

i = 0

while node and i < index:

prev = node

node = node.next

i += 1

if i == index:

if not prev:

self.head = node.next

else:

prev.next = node.next

self.length -= 1

else:

print(’Index not found!’)

def removeDupl(self):

prev = None

node = self.head

aux_dict = Counter()

while node:

value_here = node.value

if aux_dict[value_here] == 0:

aux_dict[value_here] = 1

else:

if prev == None:

self.head = node.next

else:

prev.next = node.next

self.length -= 1

prev = node

node = node.next

def removeDupl_no_buf(self):

node = self.head

132 CHAPTER 7. ABSTRACT DATA STRUCTURES

while node:

pivot = node.value

pointer = node.next

prev = node

while pointer:

value_here = pointer.value

if value_here == pivot:

prev.next = pointer.next

self.length -= 1

prev = pointer

pointer = pointer.next

node = node.next

from collections import Counter

def main():

ll = LinkList()

for i in range(1, 10):

ll.addNode(i)

ll.addNode(i+1)

print(’Linked List with duplicates:’)

ll.printList()

print(’Length before deleting duplicate is: ’, ll.length)

ll.removeDupl()

ll.printList()

print(’Lenght after deleting duplicates is: ’, ll.length)

ll = LinkList()

for i in range(1, 10):

ll.addNode(i)

ll.addNode(i+1)

print(’Linked List with duplicates:’)

ll.printList()

print(’Length before deleting duplicate is: ’, ll.length)

ll.removeDupl_no_buf()

ll.printList()

print(’Lenght after deleting duplicates is: ’, ll.length)

7.5. LINKED LISTS 133

if __name__ == ’__main__’:

main()

Linked lists have a dynamic size at runtime and they are good for when
you have an unknown number of items to store. Insertion isO(1) but deletion
and searching can be O(n) because locating an element in a linked list is slow
and is it done by a sequential search. Traversing backward or sorting a linked
list are even worse, being both O(n2). A good trick to obtain deletion of a
node i at O(1) is copying the data from i + 1 to i and then to deleting the
node i + 1.

134 CHAPTER 7. ABSTRACT DATA STRUCTURES

7.6 Additional Exercises

Stacks

Stacks are very useful when data has to be sorted and retrieved in reverse
order. In the example bellow we use our Stack class to reverse a string:

[adt/stacks/reverse_string_with_stack.py]

import sys

import stack

def reverse_string_with_stack(str1):

s = stack.Stack()

revStr = ’’

for c in str1:

s.push(c)

while not s.isEmpty():

revStr += s.pop()

return revStr

def test_reverse_string_with_stack():

str1 = ’Buffy is a Slayer!’

assert(reverse_string_with_stack(str1) == ’!reyalS a si yffuB’)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_reverse_string_with_stack()

The following example uses a stack to balance parenthesis in a string:

[adt/stacks/balance_parenthesis_str_stack.py]

from stack import Stack

def balance_par_str_with_stack(symbolString):

s = Stack()

balanced = True

index = 0

while index < len(symbolString) and balanced:

7.6. ADDITIONAL EXERCISES 135

symbol = symbolString[index]

if symbol == "(":

s.push(symbol)

else:

if s.isEmpty():

balanced = False

else:

s.pop()

index = index + 1

if balanced and s.isEmpty():

return True

else:

return False

def test_balance_par_str_with_stack(module_name=’this module’):

print(balance_par_str_with_stack(’((()))’))

print(balance_par_str_with_stack(’(()’))

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_balance_par_str_with_stack()

The following example uses a stack to transform a decimal number to
binary number:

[atf/stacks/dec2bin_with_stack.py]

from stack import Stack

def dec2bin_with_stack(decnum):

s = Stack()

str_aux = ’’

while decnum > 0:

dig = decnum % 2

decnum = decnum//2

s.push(dig)

136 CHAPTER 7. ABSTRACT DATA STRUCTURES

while not s.isEmpty():

str_aux += str(s.pop())

return str_aux

def test_dec2bin_with_stack(module_name=’this module’):

decnum = 9

assert(dec2bin_with_stack(decnum) == ’1001’)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_dec2bin_with_stack()

The following example implements a stack that hasO(1) minimum lookup:

[adt/stacks/stack_with_min.py]

class Stack(list):

def push(self, value):

if len(self) > 0:

last = self[-1]

minimum = self._find_minimum(value, last)

else:

minimum = value

self.minimum = minimum

self.append(NodeWithMin(value, minimum))

def _find_minimum(self, value, last_value):

if value < last_value.minimum:

return value

return last_value.minimum

def min(self):

return self.minimum

class NodeWithMin(object):

def __init__(self, value, minimum):

self.value = value

7.6. ADDITIONAL EXERCISES 137

self.minimum = minimum

def __repr__(self):

return str(self.value)

def min(self):

return self.minimum

def main():

stack = Stack()

stack.push(1)

stack.push(2)

stack.push(3)

node = stack.pop()

print(node.minimum)

stack.push(0)

stack.push(4)

node = stack.pop()

print(node.min())

print(stack.min())

print(stack)

if __name__ == ’__main__’:

main()

The following example implements a set of stacks, composed of several
stacks. It creates a new stack when the previous stack exceeds capacity. The
push and pop methods are identical to a single stack:

[adt/stacks/set_of_stacks.py]

class SetOfStacks(list):

def __init__(self, capacity=4):

self.stacks = []

self.last_stack = []

self.capacity = capacity

self.stacks.append(self.last_stack)

def __repr__(self):

138 CHAPTER 7. ABSTRACT DATA STRUCTURES

return str(self.stacks)

def push(self, value):

last_stack = self.last_stack

if len(last_stack) is self.capacity:

last_stack = []

self.last_stack = last_stack

self.stacks.append(last_stack)

last_stack.append(value)

def pop(self):

last_stack = self.last_stack

value = last_stack.pop()

if len(last_stack) is 0:

self.stacks.pop()

self.last_stack = self.stacks[-1]

return value

def main():

stack = SetOfStacks()

stack.push(1)

stack.push(2)

stack.push(3)

stack.push(4)

stack.push(5)

stack.push(6)

print(stack)

stack.pop()

stack.pop()

stack.pop()

print(stack)

if __name__ == ’__main__’:

main()

7.6. ADDITIONAL EXERCISES 139

Queues

The example bellow uses the concepts of a queue to rotate an array from
right to left for a given number n:3

[adt/queues/rotating_array.py]

def rotating_array(seq, n):

myqueue = []

for i in range(n):

myqueue.append(seq.pop())

myqueue.reverse()

return myqueue + seq

def test_rotating_array(module_name=’this module’):

seq = [1, 2, 3, 4, 5, 6, 7]

n = 4

assert(rotating_array(seq, N) == [4, 5, 6, 7, 1, 2, 3])

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_rotating_array()

Deques

A nice application for a double-ended queue is verifying whether a string is
a palindrome:

[adt/queues/palindrome_checker_with_deque.py]

import sys

import string

import collections

3We could get the same effect using collections.deque with the method rotate(n).

140 CHAPTER 7. ABSTRACT DATA STRUCTURES

def palindrome_checker_with_deque(str1):

d = collections.deque()

eq = True

strip = string.whitespace + string.punctuation + "\"’"

for s in str1.lower():

if s not in strip: d.append(s)

while len(d) > 1 and eq:

first = d.pop()

last = d.popleft()

if first != last:

eq = False

return eq

def test_palindrome_checker_with_deque():

str1 = ’Madam Im Adam’

str2 = ’Buffy is a Slayer’

assert(palindrome_checker_with_deque(str1) == True)

assert(palindrome_checker_with_deque(str2) == False)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_palindrome_checker_with_deque()

Priority Queues and Heaps

The example bellow uses Python’s heapq package to find the N largest and
smallest items in a sequence:

[adt/heap/find_N_largest_smallest_items_seq.py]

import heapq

def find_N_largest_items_seq(seq, N):

return heapq.nlargest(N,seq)

def find_N_smallest_items_seq(seq, N):

return heapq.nsmallest(N, seq)

7.6. ADDITIONAL EXERCISES 141

def find_smallest_items_seq_heap(seq):

’’’ find the smallest items in a sequence using heapify first’’’

’’’ heap[0] is always the smallest item ’’’

heapq.heapify(seq)

return heapq.heappop(seq)

def find_smallest_items_seq(seq):

’’’ if it is only one item, min() is faster ’’’

return min(seq)

def find_N_smallest_items_seq_sorted(seq, N):

’’’ N ~ len(seq), better sort instead’’’

return sorted(seq)[:N]

def find_N_largest_items_seq_sorted(seq, N):

’’’ N ~ len(seq), better sort instead’’’

return sorted(seq)[len(seq)-N:]

def test_find_N_largest_smallest_items_seq(module_name=’this

module’):

seq = [1, 3, 2, 8, 6, 10, 9]

N = 3

assert(find_N_largest_items_seq(seq, N) == [10, 9, 8])

assert(find_N_largest_items_seq_sorted(seq, N) == [8, 9, 10])

assert(find_N_smallest_items_seq(seq, N) == [1,2,3])

assert(find_N_smallest_items_seq_sorted(seq, N) == [1,2,3])

assert(find_smallest_items_seq(seq) == 1)

assert(find_smallest_items_seq_heap(seq) == 1)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_find_N_largest_smallest_items_seq()

142 CHAPTER 7. ABSTRACT DATA STRUCTURES

The following example uses Python’s heapq package to merge a two sorted
sequences with little overhead:4

[adt/heap/merge_sorted_seqs.py]

import heapq

def merge_sorted_seqs(seq1, seq2):

result = []

for c in heapq.merge(seq1, seq2):

result.append(c)

return result

def test_merge_sorted_seq(module_name=’this module’):

seq1 = [1, 2, 3, 8, 9, 10]

seq2 = [2, 3, 4, 5, 6, 7, 9]

seq3 = seq1 + seq2

assert(merge_sorted_seq(seq1, seq2) == sorted(seq3))

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_merge_sorted_seq()

Linked List

The following example implements a linked list class from stack methods:

[adt/linked_lists/linked_list_from_stack.py]

class Node(object):

def __init__(self,data=None,next=None):

self.data = data

self.next = next

def setnext(self,next):

4Note that the result would not be sorted if we just added both lists.

7.6. ADDITIONAL EXERCISES 143

self.next = next

def __str__(self):

return "%s" % self.data

class LinkedListStack(object):

def __init__(self, max=0):

self.max = max

self.head = None

self.z = None

self.size = 0

def push(self, data):

if self.size == 0:

self.head = Node(data)

self.size += 1

else:

head = self.head

node = Node(data = data)

self.head = node

node.setnext(head)

def pop(self):

node = self.head.next

self.head = node

def isEmpty(self):

return self.size == 0

def __str__(self):

d = ""

if self.isEmpty(): return ""

else:

temp = self.head

d += "%s\n" % temp

while temp.next != None:

temp = temp.next

d += "%s\n" % temp

return d

144 CHAPTER 7. ABSTRACT DATA STRUCTURES

def test_ll_from_stack():

ll = LinkedListStack(max = 20)

ll.push("1")

ll.push("2")

ll.push("3")

ll.push("4")

print(ll)

ll.pop()

print(ll)

if __name__ == ’__main__’:

test_ll_from_stack()

The following snippet shows an example of an ordered linked list. In this
case, the list is a collection of items where each item holds a relative position
that is based upon some underlying characteristic of the item. The ordering
is typically either ascending or descending and we assume that list items
have a meaningful comparison operation that is already defined. Many of
the ordered list operations are the same as those from the unordered list:

[adt/linked_lists/ordered_list.py]

from Node import Node

class OrderedList(object):

def __init__(self):

self.head = None

def add(self,item):

’’’ this method is different from linked list ’’’

current = self.head

previous = None

stop = False

while current != None and not stop:

if current.getData() > item:

stop = True

else:

previous = current

current = current.getNext()

7.6. ADDITIONAL EXERCISES 145

temp = Node(item)

if previous == None:

temp.setNext(self.head)

self.head = temp

else:

temp.setNext(current)

previous.setNext(temp)

def length(self):

current = self.head

count = 0

while current != None:

count = count + 1

current = current.getNext()

return count

def search(self,item):

’’’ this method is different from linked list ’’’

current = self.head

found = False

stop = False

while current != None and not found and not stop:

if current.getData() == item:

found = True

else:

if current.getData() > item:

stop = True

else:

current = current.getNext()

return found

def remove(self,item):

current = self.head

previous = None

found = False

while not found:

if current.getData() == item:

found = True

else:

previous = current

146 CHAPTER 7. ABSTRACT DATA STRUCTURES

current = current.getNext()

if previous == None:

self.head = current.getNext()

else:

previous.setNext(current.getNext())

def test_OrderedList(module_name=’this module’):

olist = OrderedList()

olist.add(31)

olist.add(22)

olist.add(10)

assert(olist.search(22) == True)

olist.remove(22)

assert(olist.search(22) == False)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_OrderedList()

Chapter 8

Asymptotic Analysis

Asymptotic analysis is a method to describe the limiting behavior and the
performance of algorithms when applied to very large input datasets. To
understand why asymptotic analysis is important, suppose you have to sort
a billion of numbers (n = 109)1 in a common desktop computer. Suppose
that this computer has a CPU clock time of 1 GHz, which roughly means
that it executes 109 processor cycles (or operations) per second.2 Then, for
an algorithm that has a runtime of O(n2), it would take approximately one
billion of seconds to finish the sorting (in the worst case) which means one
entire year!

Another way of visualizing the importance of asymptotic analysis is di-
rectly looking to the function’s behaviour. In the Fig. 8 we have many classes
of functions plotted together and it is clear that when n increases, the number
of operations for any polynomial or exponential algorithm is infeasible.

8.1 Complexity Classes

A complexity class is a set of problems with related complexity. A reduction
is a transformation of one problem into another problem which is at least

1Remember that for memory gigabytes means 10243 = 230 bytes and for storage it
means 10003 = 109 bytes. Also, integers usually take 2 or 4 bytes each. However, for this
example we are simplifying this by saying that a ‘number’ has 1 byte.

2In this exercise we are not considering other factors that would make the processing
slower, such as RAM latency, copy cache operations, etc.

147

148 CHAPTER 8. ASYMPTOTIC ANALYSIS

Figure 8.1: Asymptotic behaviour of many classes of functions.

as difficult as the original problem. The most commonly used reduction
is a polynomial-time reduction, meaning that the reduction process takes
polynomial time. A problem is hard for a class of problems if every problem
in it can be reduced to the original problem.

P

The complexity class of decision problems that can be solved on a determin-
istic Turing machine in polynomial time (in the worst case). If we can turn
a problem into a decision problem, the result would belong to P.

NP

The complexity class of decision problems that can be solved on a non-
deterministic Turing machine (NTM) in polynomial time. In other words, it
includes all decision problems whose yes instances can be solved in polyno-
mial time with the NTM. A problem is called complete if all problems in the
class are reduced to it. Therefore, the subclass called NP-complete (NPC)
contains the hardest problems in all of NP.

8.2. RECURSION 149

Any problem that is at least as hard (determined by polynomial-time
reduction) as any problem in NP, but that need not itself be in NP, is
called NP-hard. For example, finding the shortest route through a graph,
which is called the Travelling Salesman (or Salesrep) problem (TSP).

P=NP?

The class co-NP is the class of the complements of NP problems. For every
“yes” answer, we have the “no”, and vice versa. If NP is truly asymmetric,
then these two classes are different. Although there is overlap between them
because all of P lies in their intersection: both the yes and no instances in
P can be solved in polynomial time with an NTM.

What would happen if a NPC was found in a intersection of N and co-
NP? First, it would mean that all of NP would be inside co-NP, so we
would show NP = co-NP and the asymmetry would disappear. Second,
since all of P is in this intersection, P = NP. If P = NP, we could solve
any (decision) problem that had a practical (verifiable) solution.

However, it is (strongly) believed that NP and co-NP are different. For
instance, no polynomial solution to the problem of factoring numbers was
found, and this problem is in both NP and co-NP.

8.2 Recursion

The three laws of recursion are:

1. A recursive algorithm must have a base case.

2. A recursive algorithm must change its state and move toward the base
case.

3. A recursive algorithm must call itself, recursively.

For every recursive call, the recursive function has to allocate memory on
the stack for arguments, return address, and local variables, costing time to
push and pop these data onto the stack. Recursive algorithms take at least
O(n) space where n is the depth of the recursive call.

Recursion is very costly when there are duplicated calculations and/or
there are overlap among subproblems. In some cases this can cause the stack

150 CHAPTER 8. ASYMPTOTIC ANALYSIS

to overflow. For this reason, where subproblems overlap, iterative solutions
might be a better approach. For example, in the case of the Fibonacci
series, the iterative solution runs on O(n) while the recursive solution runs
on exponential runtime.

Recursive Relations

To describe the running time of recursive functions, we use recursive relations:

T (n) = a · T (g(n)) + f(n),

where a represents the number of recursive calls, g(n) is the size of each
subproblem to be solved recursively, and f(n) is any extra work done in the
function. The following table shows examples of recursive relations:

T (n) = T (n− 1) + 1 O(n) Processing a sequence
T (n) = T (n− 1) + n O(n2) Handshake problem
T (n) = 2T (n− 1) + 1 O(2n) Towers of Hanoi
T (n) = T (n/2) + 1 O(lnn) Binary search
T (n) = T (n/2) + n O(n) Randomized select
T (n) = 2T (n/2) + 1 O(n) Tree transversal
T (n) = 2T (n/2) + n O(n lnn) Sort by divide and conquer

Divide and Conquer Algorithms

Recurrences for the divide and conquer algorithms have the form:

T (n) = a · T (n/b) + f(n),

where we have a recursive calls, each with a percentage 1/b of the dataset.
Summing to this, the algorithm does f(n) of work. To reach the problem of
T(1) = 1 in the final instance (leaf, as we will learn when we study trees),
the height is defined as h = lnb n, Fig. 8.2.

8.3 Runtime in Functions

We are now ready to estimate algorithm runtimes. First of all, if the algo-
rithm does not have any recursive calling, we only need to analyse its data

8.3. RUNTIME IN FUNCTIONS 151

Figure 8.2: Tree illustrating divide and conquer recurrences.

structures and flow blocks. In this case, complexities of code blocks exe-
cuted one after the other are just added and complexities of nested loops are
multiplied.

If the algorithm has recursive calls, we can use the recursive functions
from the previous section to find the runtime. When we write a recurrence
relation for a function, we must write two equations, one for the general case
and one for the base case (that should be O(1), so that T (1) = 1). Keeping
this in mind, let us take a look at the example of the algorithm to find the
nth element in a Fibonacci sequence, which is known as to be exponential:

[general_poroblems/numbers/find_fibonacci_seq.py]

def find_fibonacci_seq_rec(n):

if n < 2: return n

return find_fibonacci_seq_rec(n - 1) +

find_fibonacci_seq_rec(n - 2)

Here, g(n)s are n − 2 and n − 1, a is 2, and f(n) is 1, so the recursive
relation in this case is

T (n) = 2T (n− 1) + 1.

Now let us open this equation for each next recursion:

T (n) = 22T (n− 2) + 2→ 2kT (n− k) + k...

152 CHAPTER 8. ASYMPTOTIC ANALYSIS

We need to make sure that the function have O(1) in the base case, where
it is T (1) = 1, this means that n−k = 1 or k = n− 1. So plugging back into
the equation, we have:

T (n) = 2n−1 + n− 1 ∼ 2n. (8.3.1)

We have indeed proved that this algorithm is exponential! The same
process can be done for each recursive relation and the following table shows
the runtime results for many algorithm:

O(n2) quadratic insertion, selection sort
O(n lnn) loglinear algorithms breaking problem into smaller chunks

per invocation, and then sticking the results together,
quick and merge sort

O(n) linear iteration over a list
O(lnn) log algorithms breaking problem into smaller chunks

per invocation, searching a binary search tree
O(1) constant hash table lookup/modification
O(nk) polynomial k-nested for loops over n
O(kn) exponential producing every subset of n items
O(n!) factorial producing every ordering of n values

Chapter 9

Sorting

The simplest way of sorting a group of items is to start by removing the
smallest item from the group, and putting it first. Then removing the next
smallest, and putting it next and so on. This is clearly an O(n2) algorithm,
so we need to find a better solution. In this chapter we will look at many
examples of sorting algorithms and analyse their characteristics and runtimes.

An in-place sort does not use any additional memory to do the sorting
(for example, swapping elements in an array). A stable sort preserves the
relative order of otherwise identical data elements (for example, if two data
elements have identical values, the one that was ahead of the other stays
ahead). In any comparison sort problem, a key is the value (or values) that
determines the sorting order. A comparison sort requires only that there is a
way to determine if a key is less than, equal to, or greater than another key.
Most sorting algorithms are comparison sorts where the worst-case running
time for such sorts can be no better than O(n lnn).

9.1 Quadratic Sort

Insertion Sort

Insertion sort is a simple sorting algorithm with best runtime case runtime of
O(n) and average and worst runtime cases of O(n2). It sorts by repeatedly
inserting the next unsorted element in an initial sorted segment of the array.
For small data sets, it can be preferable to more advanced algorithms such
as merge sort or quicksort if the list is already sorted (it is a good way to

153

154 CHAPTER 9. SORTING

add new elements to a presorted list):

[sorting/insertion_sort.py]

def insertion_sort(seq):

for i in range(1, len(seq)):

j = i

while j > 0 and seq[j-1] > seq[j]:

seq[j-1], seq[j] = seq[j], seq[j-1]

j -= 1

return seq

def insertion_sort_rec(seq, i = None):

if i == None: i = len(seq) -1

if i == 0: return i

insertion_sort_rec(seq, i-1)

j = i

while j > 0 and seq[j-i] > seq[j]:

seq[j-1], seq[j] = seq[j], seq[j-1]

j -= 1

return seq

def test_insertion_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2, 5, 4, 1, 5, 3]

assert(insertion_sort(seq) == sorted(seq))

assert(insertion_sort_rec(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_insertion_sort()

Selection Sort

Selection sort is based on finding the smallest or largest element in a list
and exchanging it to the first, then finding the second, etc, until the end is
reached. Even when the list is sorted, it is O(n2) (and not stable):

[sorting/selection_sort.py]

9.1. QUADRATIC SORT 155

def selection_sort(seq):

for i in range(len(seq) -1, 0, -1):

max_j = i

for j in range(max_j):

if seq[j] > seq[max_j]:

max_j = j

seq[i], seq[max_j] = seq[max_j], seq[i]

return seq

def test_selection_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2]

assert(selection_sort(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_selection_sort()

Gnome Sort

Gnome sort works by moving forward to find a misplaced value and then
moving backward to place it in the right position:

[sorting/gnome_sort.py]

def gnome_sort(seq):

i = 0

while i < len(seq):

if i ==0 or seq[i-1] <= seq[i]:

i += 1

else:

seq[i], seq[i-1] = seq[i-1], seq[i]

i -= 1

return seq

def test_gnome_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2, 5, 4, 1, 5, 3]

assert(gnome_sort(seq) == sorted(seq))

156 CHAPTER 9. SORTING

print(’Tests passed!’)

if __name__ == ’__main__’:

test_gnome_sort()

9.2 Linear Sort

Count Sort

Count sort sorts integers with a small value range, counting occurrences
and using the cumulative counts to directly place the numbers in the result,
updating the counts as it goes.

There is a loglinear limit on how fast you can sort if all you know about
your data is that they are greater or less than each other. However, if you
can also count events, sort becomes linear in time, O(n + k):

[sorting/count_sort.py]

from collections import defaultdict

def count_sort_dict(a):

b, c = [], defaultdict(list)

for x in a:

c[x].append(x)

for k in range(min(c), max(c) + 1):

b.extend(c[k])

return b

def test_count_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2, 5, 4, 1, 5, 3]

assert(count_sort_dict(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_count_sort()

If several values have the same key, they will have the original order with

9.3. LOGLINEAR SORT 157

respect with each other, so the algorithm is stable.

9.3 Loglinear Sort

The sort() and sorted() Methods

In Python, we would normally sort a list by using the list.sort() (in-place)
method or any other iterable item by the sorted() function. They are both
a very efficient implementation of the Python’s timsort algorithm1. With
the sorted() function, the original object is not changed.

The sorted() function can also be customized though optional argu-
ments, for example: reverse=True; key=len; str.lower (treating upper-
case and lowercase the same); or even with a custom sorting function.

Merge Sort

Merge sort divides the list in half to create two unsorted lists. These two
unsorted lists are sorted and merged by continually calling the merge-sort
algorithm, until you get a list of size 1. The algorithm is stable, as well as
fast for large data sets. However, since it is not in-place, it requires much
more memory than many other algorithms. The space complexity is O(n)
for arrays and O(lnn) for linked lists2. The best, average, and worst case
times are all O(n lnn).

Merge sort is a good choice when the data set is too large to fit into the
memory. The subsets can be written to disk in separate files until they are
small enough to be sorted in memory. The merging is easy, and involves just
reading single elements at a time from each file and writing them to the final
file in the correct order:

[sorting/merge_sort.py]

O(log(n))

1Timsort is a hybrid sorting algorithm, derived from merge sort and insertion sort, and
invented by Tim Peters for Python.

2Never ever consider to sort a linked list tough, it is problem the worst option you have
in terms of runtime complexity.

158 CHAPTER 9. SORTING

def merge_sort(seq):

if len(seq) < 2 : return seq

mid = len(seq)//2

left, right = None, None

if seq[:mid]: left = merge_sort([:mid])

if seq[mid:]: right = merge_sort([mid:])

return merge_n(left,right)

#O(2n)

def merge_2n(left, right):

if not left or not right:

return left or right

result = []

while left and right :

if left[-1] >= right[-1]:

result.append(left.pop())

else:

result.append(right.pop())

result.reversed()

return (left or right) + result

#O(n)

def merge_n(left,right):

if not left or not right:

return left or right

result = []

i,j = 0,0

while i < len(left) and j < len(right):

if left[i] <= right[i]:

result.append(left[i])

i+=1

else :

result.append(right[j])

j+=1

if i < len(left) - 1 : result+=left[i:]

elif j < len(right) - 1 : result += right[j:]

return result

def test_merge_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2]

9.3. LOGLINEAR SORT 159

assert(merge_sort(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_merge_sort()

Quick Sort

Quick sort works by choosing a pivot and partitioning the array so that the
elements that are smaller than the pivot goes to the left. Then, it recursively
sorts the left and right parts.

The choice of the pivot value is a key to the performance. It can be shown
that always choosing the value in the middle of the set is the best choice
for already-sorted data and no worse than most other choices for random
unsorted data.

The worst case is O(n2) in the rare cases when partitioning keeps pro-
ducing a region of n − 1 elements (when the pivot is the minimum value).
The best case produces two n/2-sized lists. This and the average case are
both O(n lnn). The algorithm is not stable.

[sorting/quick_sort.py]

def quick_sort(seq):

if len(seq) < 2 : return seq

mid = len(seq)//2

pi = seq[mid]

seq = seq[:mid] + seq[mid+1:]

lo = [x for x in seq if x <= pi]

hi = [x for x in seq if x > pi]

return quick_sort(lo) + [pi] + quick_sort(hi)

def test_quick_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2]

assert(quick_sort(seq) == sorted(seq))

assert(quick_sort_divided(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

160 CHAPTER 9. SORTING

test_quick_sort()

Heap Sort

Heap sort is similar to a selection sort, except that the unsorted region is a
heap, so finding the largest element n times gives a loglinear runtime.

In a heap, for every node other than the root, the value of the node is at
least (at most) the value of its parent. Thus, the smallest (largest) element is
stored at the root and the subtrees rooted at a node contain larger (smaller)
values than does the node itself.

Although the insertion is only O(1), the performance of validating (the
heap order) is O(lnn). Searching (traversing) is O(n). In Python, a heap
sort can be implemented by pushing all values onto a heap and then popping
off the smallest values one at a time:

[sorting/heap_sort1.py]

import heapq

def heap_sort1(seq):

’’’ heap sort with Pythons heapq ’’’

h = []

for value in seq:

heapq.heappush(h, value)

return [heapq.heappop(h) for i in range(len(h))]

def test_heap_sort1():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2]

assert(heap_sort1(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_heap_sort1()

If we decide to use the heap class that we have from the last chapters, we
can write a heap sort simply by:

9.3. LOGLINEAR SORT 161

[sorting/heap_sort2.py]

from heap import Heap

def heap_sort2(seq):

heap = Heap(seq)

res = []

for i in range(len(seq)):

res.insert(0, heap.extract_max())

return res

def test_heap_sort2():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2]

assert(heap_sort2(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_heap_sort2()

Finally, we can also write our heap sort explicitly:

[sorting/heap_sort3.py]

def heap_sort3(seq):

for start in range((len(seq)-2)//2, -1, -1):

siftdown(seq, start, len(seq)-1)

for end in range(len(seq)-1, 0, -1):

seq[end], seq[0] = seq[0], seq[end]

siftdown(seq, 0, end - 1)

return seq

def siftdown(seq, start, end):

root = start

while True:

child = root * 2 + 1

if child > end: break

if child + 1 <= end and seq[child] < seq[child + 1]:

child += 1

if seq[root] < seq[child]:

162 CHAPTER 9. SORTING

seq[root], seq[child] = seq[child], seq[root]

root = child

else:

break

def test_heap_sort():

seq = [3, 5, 2, 6, 8, 1, 0, 3, 5, 6, 2]

assert(heap_sort3(seq) == sorted(seq))

print(’Tests passed!’)

if __name__ == ’__main__’:

test_heap_sort3()

9.4. COMPARISON BETWEEN SORTING METHODS 163

9.4 Comparison Between Sorting Methods

164 CHAPTER 9. SORTING

9.5 Additional Exercises

Quadratic Sort

The following program implements a bubble sort, a very inefficient sorting
algorithm:

[searching/bubble_sort.py]

def bubble_sort(seq):

size = len(seq) -1

for num in range(size, 0, -1):

for i in range(num):

if seq[i] > seq[i+1]:

temp = seq[i]

seq[i] = seq[i+1]

seq[i+1] = temp

return seq

def test_bubble_sort(module_name=’this module’):

seq = [4, 5, 2, 1, 6, 2, 7, 10, 13, 8]

assert(bubble_sort(seq) == sorted(seq))

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_bubble_sort()

Linear Sort

The example bellow shows a simple count sort for people ages:

def counting_sort_age(A):

oldestAge = 100

timesOfAge = [0]*oldestAge

ageCountSet = set()

B = []

9.5. ADDITIONAL EXERCISES 165

for i in A:

timesOfAge[i] += 1

ageCountSet.add(i)

for j in ageCountSet:

count = timesOfAge[j]

while count > 0:

B.append(j)

count -= 1

return B

The example bellow uses quick sort to find the k largest elements in a
sequence:

[sorting/find_k_largest_seq_quicksort.py]

import random

def swap(A, x, y):

tmp = A[x]

A[x] = A[y]

A[y] = tmp

def qselect(A, k, left=None, right=None):

left = left or 0

right = right or len(A) - 1

pivot = random.randint(left, right)

pivotVal = A[pivot]

swap(A, pivot, right)

swapIndex, i = left, left

while i <= right - 1:

if A[i] < pivotVal:

swap(A, i, swapIndex)

swapIndex += 1

i += 1

swap(A, right, swapIndex)

rank = len(A) - swapIndex

if k == rank:

166 CHAPTER 9. SORTING

return A[swapIndex]

elif k < rank:

return qselect(A, k, left=swapIndex+1, right=right)

else:

return qselect(A, k, left=left, right=swapIndex-1)

def find_k_largest_seq_quickselect(seq, k):

kth_largest = qselect(seq, k)

result = []

for item in seq:

if item >= kth_largest:

result.append(item)

return result

def test_find_k_largest_seq_quickselect():

seq = [3, 10, 4, 5, 1, 8, 9, 11, 5]

k = 2

assert(find_k_largest_seq_quickselect(seq,k) == [10, 11])

if __name__ == ’__main__’:

test_find_k_largest_seq_quickselect()

Chapter 10

Searching

The most common searching algorithms are the sequential search and the
binary search. If an input array is not sorted, or the input elements are
accommodated by dynamic containers (such as linked lists), the search has
to be sequential. If the input is a sorted array, the binary search algorithm
is the best choice. If we are allowed to use auxiliary memory, a hash table
might help the search, with which a value can be located in O(1) time with
a key.

10.1 Sequential Search

In the following example we illustrate the runtime of a sequential search for
items stored in a collection. If the item is present, the best case is O(1), the
average case is O(n/2), and the worst case is O(n). However, if the item is
not present, all three cases will be O(n):

[searching/sequential_search.py]

def sequential_search(seq, n):

for item in seq:

if item == n: return True

return False

def test_sequential_search(module_name=’this module’):

seq = [1, 5, 6, 8, 3]

167

168 CHAPTER 10. SEARCHING

n1 = 5

n2 = 7

assert(sequential_search(seq, n1) == True)

assert(sequential_search(seq, n2) == False)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_sequential_search()

Now, if we sort the sequence first, we can improve the sequential search
in the case when the item is not present to have the same runtimes as when
the item is present:

[searching/ordered_sequential_search.py]

def ordered_sequential_search(seq, n):

item = 0

for item in seq:

if item > n: return False

if item == n: return True

return False

def test_ordered_sequential_search(module_name=’this module’):

seq = [1, 2, 4, 5, 6, 8, 10]

n1 = 10

n2 = 7

assert(ordered_sequential_search(seq, n1) == True)

assert(ordered_sequential_search(seq, n2) == False)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_ordered_sequential_search()

10.2. BINARY SEARCH 169

10.2 Binary Search

A binary search finds the position of a specified input value (the key) within
a sorted array. In each step, the algorithm compares the search key value
with the key value of the middle element of the array. If the keys match
the item’s index, (position) is returned. Otherwise, if the search key is less
than the middle element’s key, the algorithm repeats the process in the left
subarray; or if the search key is greater, on the right subarray. The algorithm
runs on O(lnn):

[searching/binary_search.py]

def binary_search_rec(seq,key): # Recursive

if not seq : return None

mid = len(seq)//2

if key == seq[mid] : return mid

elif key < seq[mid] : return binary_search_rec(seq[:mid],key)

else : return binary_search_rec(seq[mid+1:],key)

def binary_search_iter(seq,key): # Iterative

hi, lo = len(seq), 0

while lo < hi :

mid = (hi + lo)//2

if key == seq[mid] : return mid

elif key < seq[mid] : hi = mid

else : low = mid + 1

return None

def test_binary_search():

seq = [1,2,5,6,7,10,12,12,14,15]

key = 6

assert(binary_search_iter(seq, key) == 3)

assert(binary_search_rec(seq, key) == 3)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_binary_search()

170 CHAPTER 10. SEARCHING

The bisect Module

Python’s built-in bisect() module is available for binary search in a sorted
sequence:

>>> from bisect import bisect

>>> list = [0, 3, 4, 5]

>>> bisect(list, 5)

4

Note that the module returns the index after the key, which is where you
should place the new value. Other available functions are bisect right and
bisect left.

10.3. ADDITIONAL EXERCISES 171

10.3 Additional Exercises

Searching in a Matrix

The following module searches an entry in a matrix where the rows and
columns are sorted. In this case, every row is increasingly sorted from left
to right, and every column is increasingly sorted from top to bottom. The
runtime is linear on O(m + n):

[general_problems/numbers/search_entry_matrix.py]

def find_elem_matrix_bool(m1, value):

found = False

row = 0

col = len(m1[0]) - 1

while row < len(m1) and col >= 0:

if m1[row][col] == value:

found = True

break

elif m1[row][col] > value:

col-=1

else:

row+=1

return found

def test_find_elem_matrix_bool(module_name=’this module’):

m1 = [[1,2,8,9], [2,4,9,12], [4,7,10,13], [6,8,11,15]]

assert(find_elem_matrix_bool(m1,8) == True)

assert(find_elem_matrix_bool(m1,3) == False)

m2 = [[0]]

assert(find_elem_matrix_bool(m2,0) == True)

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_find_elem_matrix_bool()

The following problem searches an element in a matrix where in every
row, the values increasing from left to right, but the last number in a row is

172 CHAPTER 10. SEARCHING

smaller than the first number in the next row. The naive brute force solution
scans all numbers and costs O(mn). However, since the numbers are already
sorted, the matrix can be viewed as a 1D sorted array and we can use the
binary search algorithm with efficiency O(lognm):

[searching/searching_in_a_matrix.py]

import numpy

def searching_in_a_matrix(m1, value):

rows = len(m1)

cols = len(m1[0])

lo = 0

hi = rows*cols

while lo < hi:

mid = (lo + hi)//2

row = mid//cols

col = mid%cols

v = m1[row][col]

if v == value: return True

elif v > value: hi = mid

else: lo = mid+1

return False

def test_searching_in_a_matrix():

a = [[1,3,5],[7,9,11],[13,15,17]]

b = numpy.array([(1,2),(3,4)])

assert(searching_in_a_matrix(a, 13) == True)

assert(searching_in_a_matrix(a, 14) == False)

assert(searching_in_a_matrix(b, 3) == True)

assert(searching_in_a_matrix(b, 5) == False)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_searching_in_a_matrix()

10.3. ADDITIONAL EXERCISES 173

Unimodal Arrays

An array is unimodal if it consists of an increasing sequence followed by a
decreasing sequence. The example below shows how to find the “locally
maximum” of an array using binary search:

[searching/find_max_unimodal_array.py]

def find_max_unimodal_array(A):

if len(A) <= 2 : return None

left = 0

right = len(A)-1

while right > left +1:

mid = (left + right)//2

if A[mid] > A[mid-1] and A[mid] > A[mid+1]:

return A[mid]

elif A[mid] > A[mid-1] and A[mid] < A[mid+1]:

left = mid

else:

right = mid

return None

def test_find_max_unimodal_array():

seq = [1, 2, 5, 6, 7, 10, 12, 9, 8, 7, 6]

assert(find_max_unimodal_array(seq) == 12)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_find_max_unimodal_array()

Calculating Square Roots

The example bellow implements the square root of a number using binary
search:

[searching/find_sqrt_bin_search.py]

def find_sqrt_bin_search(n, error=0.001):

lower = n < 1 and n or 1

174 CHAPTER 10. SEARCHING

upper = n < 1 and 1 or n

mid = lower + (upper - lower) / 2.0

square = mid * mid

while abs(square - n) > error:

if square < n:

lower = mid

else:

upper = mid

mid = lower + (upper - lower) / 2.0

square = mid * mid

return mid

def test_ind_sqrt_bin_search():

number = 9

assert(find_sqrt_bin_search(number) == 3)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_ind_sqrt_bin_search()

Counting Frequency of Elements

The following example finds how many times a k element appears in a sorted
list. Since the array is sorted, binary search gives a O(logn) runtime:

[searching/find_time_occurence_list.py]

from binary_search import binary_search

def find_time_occurrence_list(seq, k):

index_some_k = binary_serch(seq, k)

count = 1

sizet = len(seq)

for i in range(index_some_k+1, sizet): # go up

if seq[i] == k: count +=1

else: break

for i in range(index_some_k-1, -1, -1): # go down

if seq[i] == k: count +=1

10.3. ADDITIONAL EXERCISES 175

else: break

return count

def test_find_time_occurrence_list():

seq = [1,2,2,2,2,2,2,5,6,6,7,8,9]

k = 2

assert(find_time_occurrence_list(seq, k) == 6)

print(’Tests passed!’)

if __name__ == ’__main__’:

test_find_time_occurrence_list()

Intersection of Arrays

The snippet bellow shows three ways to perform the intersection of two sorted
arrays. The simplest way is to use sets, however this will not preserve the
ordering. The second example uses an adaptation of the merge sort. The
third example is suitable when one of the arrays is much larger than other.
In this case, binary search is the best option:

[searching/intersection_two_arrays.py]

def intersection_two_arrays_sets(seq1, seq2):

’’’ find the intersection of two arrays using set proprieties

’’’

set1 = set(seq1)

set2 = set(seq2)

return set1.intersection(set2) #same as list(set1 & set2

def intersection_two_arrays_ms(seq1, seq2):

’’’ find the intersection of two arrays using merge sort ’’’

res = []

while seq1 and seq2:

if seq1[-1] == seq2[-1]:

res.append(seq1.pop())

seq2.pop()

elif seq1[-1] > seq2[-1]:

176 CHAPTER 10. SEARCHING

seq1.pop()

else:

seq2.pop()

res.reverse()

return res

from binary_search import binary_search

def intersection_two_arrays_bs(seq1, seq2):

’’’ using binary search ’’’

if len(seq1) > len(seq2): seq, key = seq1, seq2

else: seq, key = seq2, seq1

intersec = []

for item in key:

if binary_search(seq, item):

intersec.append(item)

return intersec

def test_intersection_two_arrays(module_name=’this module’):

seq1 = [1,2,3,5,7,8]

seq2 = [3,5,6]

assert(set(intersection_two_arrays_sets(seq1,seq2)) ==

set([3,5]))

assert(intersection_two_arrays_bs(seq1,seq2) == [3,5])

assert(intersection_two_arrays_ms(seq1,seq2) == [3,5])

s = ’Tests in {name} have {con}!’

print(s.format(name=module_name, con=’passed’))

if __name__ == ’__main__’:

test_intersection_two_arrays()

Chapter 11

Dynamic Programming

Dynamic programming is used to simplify a complicated problem by breaking
it down into simpler subproblems by means of recursion. If a problem has
an optimal substructure and overlapping subproblems, it may be solved by
dynamic programming.

Optimal substructure means that the solution to a given optimization
problem can be obtained by a combination of optimal solutions to its sub-
problems. The first step to utilize dynamic programming is to check whether
the problem exhibits such optimal substructure. The second step is having
overlapping problems by solving subproblems once and then storing the solu-
tion to be retrieved. A choice is made at each step in dynamic programming,
and the choice depends on the solutions to subproblems, bottom-up manner,
from smaller subproblems to larger subproblems.

11.1 Memoization

Dynamically Solving the Fibonacci Series

High-level languages such as Python can implement the recursive formulation
directly, caching return values. Memoization is a method where if a call is
made more than once with the same arguments, and the result is returned
directly from the cache.

For example, we can dynamically solve the exponential Fibonacci series
by using a memo function designed as an algorithm that uses nested scopes

177

178 CHAPTER 11. DYNAMIC PROGRAMMING

to give the wrapped function memory:

[dynamic_programming/memo.py]

from functools import wraps

def memo(func):

cache = {}

@wraps(func)

def wrap(*args):

if args not in cache:

cache[args] = func(*args)

return cache[args]

return wrap

>>> fibonacci = memo(fibonacci)

>>> fibonacci(130)

1066340417491710595814572169

We could even use the decorator directly in the function:

@memo

def fib(i):

if i < 2: return 1

return fib(i-1) + fib(i-2)

>>> fibonacci(130)

1066340417491710595814572169

11.2. ADDITIONAL EXERCISES 179

11.2 Additional Exercises

Longest Increasing Subsequence

Another interesting application of memoization is to the problem of finding
the longest increasing subsequence1 of a given sequence. A naive recur-
sive solution gives a O(2n) runtime. However, the iterative solution can be
solved in loglinear time using dynamic programming.

In the example below we benchmark these functions with an array with
40 elements to find that the memoized version takes less than one second to
run, while without dynamic programming, the function can take over 120
seconds to run:

[dynamic_programming/memoized_longest_inc_subseq.py]

from itertools import combinations

from bisect import bisect

from memo import memo

from do_benchmark import benchmark

def naive_longest_inc_subseq(seq):

’’’ exponential solution to the longest increasing subsequence

problem ’’’

for length in range(len(seq), 0, -1):

for sub in combinations(seq, length):

if list(sub) == sorted(sub):

return len(sub)

def longest_inc_subseq1(seq):

’’’ iterative solution for the longest increasing subsequence

problem ’’’

end = []

for val in seq:

idx = bisect(end, val)

if idx == len(end): end.append(val)

else: end[idx] = val

return len(end)

1See other versions of this problem in the end of the chapter about lists in Python.

180 CHAPTER 11. DYNAMIC PROGRAMMING

def longest_inc_subseq2(seq):

’’’ another iterative algorithm for the longest increasing

subsequence problem ’’’

L = [1] * len(seq)

for cur, val in enumerate(seq):

for pre in range(cur):

if seq[pre] <= val:

L[cur] = max(L[cur], 1 + L[pre])

return max(L)

def memoized_longest_inc_subseq(seq):

’’’ memoized recursive solution to the longest increasing

subsequence problem ’’’

@memo

def L(cur):

res = 1

for pre in range(cur):

if seq[pre] <= seq[cur]:

res = max(res, 1 + L(pre))

return res

return max(L(i) for i in range(len(seq)))

@benchmark

def test_naive_longest_inc_subseq():

print(naive_longest_inc_subseq(s1))

benchmark

def test_longest_inc_subseq1():

print(longest_inc_subseq1(s1))

@benchmark

def test_longest_inc_subseq2():

print(longest_inc_subseq2(s1))

@benchmark

def test_memoized_longest_inc_subseq():

11.2. ADDITIONAL EXERCISES 181

print(memoized_longest_inc_subseq(s1))

if __name__ == ’__main__’:

from random import randrange

s1 = [randrange(100) for i in range(40)]

print(s1)

test_naive_longest_inc_subseq()

test_longest_inc_subseq1()

test_longest_inc_subseq2()

test_memoized_longest_inc_subseq()

182 CHAPTER 11. DYNAMIC PROGRAMMING

Part III

Climbing is so last week! I
would rather fly, wouldn’t you?

Time to start our engines to
reach the most fun objects in

the algorithm world. Speed up
to beautiful Graphs and Trees!

183

Chapter 12

Introduction to Graphs

12.1 Basic Definitions

A graph is an abstract network, consisting of nodes (or vertices, V) connected
by edges (or arcs, E). A graph can be defined as a pair of sets, G = (V,E),
where the node set V is any finite set, and the edge set E is a set of node
pairs. For example, some graph can be simply represented by the node set
V = {a, b, c, d} and the edge set E = {{a, b}, {b, c}, {c, d}, {d, a}}.

Direction of a Graph

If a graph has no direction, it is referred as undirected. In this case, nodes
with an edge between them are adjacent and adjacent nodes are neighbors.

If the edges have a direction, the graph is directed (digraph). In this case,
the graph has leaves. The edges are no longer unordered: an edge between
nodes u and v is now either an edge (u, v) from u to v, or an edge (v, u) from
v to u. We can say that in a digraph G, the function E(G) is a relation over
V (G).

Subgraphs

A subgraph of G consists of a subset of V and E. A spanning subgraph
contains all the nodes of the original graph.

185

186 CHAPTER 12. INTRODUCTION TO GRAPHS

Completeness of a Graph

If all the nodes in a graph are pairwise adjacent, the graph is called complete.

Degree in a Node

The number of undirected edges incident on a node is called degree. Zero-
degree graphs are called isolated. For directed graphs, we can split this num-
ber into in-degree (incoming edges/parents) and out-degree/children (outgo-
ing edges).

Paths, Walks, and Cycle

A path in G is a subgraph where the edges connect the nodes in a sequence,
without revisiting any node. In a directed graph, a path has to follow the
directions of the edges.

A walk is an alternating sequence of nodes and edges that allows nodes
and edges to be visited multiple times.

A cycle is like a path except that the last edge links the last node to the
first.

Length of a Path

The length of a path or walk is the value given by its edge count.

Weight of an Edge

Associating weights with each edge in G gives us a weighted graph. The
weight of a path or cycle is the sum of its edge weights. So, for unweighted
graphs, it is simply the number of edges.

Planar Graphs

A graph that can be drawn on the plane without crossing edges is called
planar. This graph has regions, which are areas bounded by the edges.The
Euler’s formula for connected planar graphs says that V −E +F = 2, where
V,E, F are the number of nodes, edges, and regions, respectively.

12.2. THE NEIGHBORHOOD FUNCTION 187

Graph Traversal

A traversal is a walk through all the connected components of a graph. The
main difference between graph traversals is the ordering of the to-do list
among the unvisited nodes that have been discovered.

Connected and Strongly Connected Components

An undirected graph is connected if there is a path from every node to every
other node. A directed graph is connected if its underlying undirected graph
is connected.

A connected component is a maximal subgraph that is connected. Con-
nected components can be found using traversal algorithms such as depth-first
searching (DFS) or breath-first searching (BFS), as we will see in following
chapters.

If there is a path from every node to every other node in a directed graph,
the graph is called strongly connected. A strongly connected component (SCC)
is a maximal subgraph that is strongly connected.

Trees and Forests

A forest is a cycle-free graph. A tree is an acyclic, connected, and directed
graph. A forest consists of one of more trees.

In a tree, any two two nodes are connected by exactly one path. Adding
any new edge to it creates a cycle and removing any edge yields unconnected
components.

12.2 The Neighborhood Function

A graph’s neighborhood function, N(V), is a container (or iterable object) of
all neighbors of V . The most well-known data structures used to represent
them are adjacent lists and adjacent matrices.

Adjacent Lists

For each node in an adjacent list, we have access to a list (or set or container
or iterable) of its neighbor. Supposing we have n nodes, each adjacent (or

188 CHAPTER 12. INTRODUCTION TO GRAPHS

neighbor) list is just a list of such numbers. We place the lists into a main
list of size n, indexable by the node numbers, where the order is usually
arbitrary.

Using Sets as Adjacent Lists:

We can use Python’s set type to implement adjacent lists:

>>> a,b,c,d,e,f = range(6) # nodes

>>> N = [{b,c,d,f}, {a,d,f}, {a,b,d,e}, {a,e}, {a,b,c}, {b,c,d,e}]

>>> b in N[a] # membership

True

>>> b in N[b] # membership

False

>>> len(N[f]) # degree

4

Using Lists as Adjacent Lists:

We can also use Python’s lists to implement adjacent lists, which let you
efficiently iterate N(V) over any node V . Replacing sets with lists makes
membership checking to be O(n). If all that your algorithm does is iterating
over neighbors, using list may be preferential. However if the graph is dense
(many edges), adjacent sets are a better solution:

>>> a,b,c,d,e,f = range(6) # nodes

>>> N = [[b,c,d,f], [a,d,f], [a,b,d,e], [a,e], [a,b,c], [b,c,d,e]]

>>> b in N[a] # membership

True

>>> b in N[b] # membership

False

>>> len(N[f]) # degree

4

Deleting objects from the middle of a Python list is O(n), but deleting
from the end is only O(1). If the order of neighbors is not important, you
can delete an arbitrary neighbor in O(1) time by swapping it in to the last
item in the list and then calling pop().

12.2. THE NEIGHBORHOOD FUNCTION 189

Using Dictionaries as Adjacent Lists:

Finally, we can use dictionaries as adjacent lists. In this case, the neighbors
would be the keys, and we are able to associate each of them with some extra
value, such as an edge weight:

>>> a,b,c,d,e,f = range(6) # nodes

>>> N = [{b:2,c:1,d:4,f:1}, {a:4,d:1,f:4}, {a:1,b:1,d:2,e:4},

{a:3,e:2}, {a:3,b:4,c:1}, {b:1,c:2,d:4,e:3}]

>>> b in N[a] # membership

True

>>> len(N[f]) # degree

4

>>> N[a][b] # edge weight for (a,b)

2

A more flexible approach for node labels is to use dictionaries as a main
structure only. For instance, we can use a dictionary with adjacency sets:

>>> a,b,c,d,e,f = range(6) # nodes

>>> N = { ’a’:set(’bcdf’), ’b’:set(’adf’), ’c’:set(’abde’),

’d’:set(’ae’), ’e’:set(’abc’), ’f’:set(’bcde’)}

>>> ’b’ in N[’a’] # membership

True

>>> len(N[’f’]) # degree

4

Adjacent Matrices

In adjacent matrices, instead of listing all the neighbors for each node, we
have one row with one position for each possible neighbor, filled with True

and False values. The simplest implementation of adjacent matrices is given
by nested lists. Note that the diagonal is always False:

>>> a,b,c,d,e,f = range(6) # nodes

>>> N = [[0,1,1,1,0,1], [1,0,0,1,0,1], [1,1,0,1,1,0],

[1,0,0,0,1,0], [1,1,1,0,0,0], [0,1,1,1,1,0]]

>>> N[a][b] # membership

1

>>> N[a][e]

190 CHAPTER 12. INTRODUCTION TO GRAPHS

0

>>> sum(N[f]) # degree

4

An adjacent matrix for an undirected graph will always be symmetric.
To add weight to adjacent matrices, we can replace True and False by
values. In this case, non-existent edges can be represented by infinite weights
(float(’inf’), or None, -1, or very large values):

>>> _ = float(’inf’) # nodes

>>> N = [[_,2,1,4,_,1], [4,_,_,1,_,4], [1,1,_,2,4,_],

[3,_,_,_,2,_], [3,4,1,_,_,_], [1,2,_,4,3,_]]

>>> N[a][b] < _ # membership

True

>>> sum(1 for w in N[f] if w < _) # degree

4

Looking up an edge in an adjacent matrix is O(1) while iterating over a
node’s neighbor is O(n).

12.3 Introduction to Trees

While in a graph there may be multiple references to any given node; in a
tree each node (data element) is referenced only by at most one other node,
the parent node. The root node is the node that has no parent. The nodes
referenced by a parent node are called children. A tree is said to be full and
complete if all of its leaves are at the bottom and all of the non-leaf nodes
have exactly two children.

Height or Depth of a Tree

The height (or depth) of a tree is the length of the path from the root to the
deepest node in the tree. It is equal to the maximum level of any node in
the tree. The depth of the root is zero. If the height of a tree is represented
as the log of the number of leaves, the integer number from the log may be
also called depth.

12.3. INTRODUCTION TO TREES 191

Level or Depth of a Node

The level (or depth) of a node is the length of path from the root to this
node. The set of all nodes at a given depth in a tree is also called the level
of the tree.

Representing Trees

The simplest way of representing a tree is by a nested lists:

>>> T = [’a’, [’b’, [’d’, ’f’]], [’c’, [’e’, ’g’]]]

>>> T[0]

’a’

>>> T[1][0]

’b’

>>> T[1][1][0]

’d’

>>> T[1][1][1]

’f’

>>> T[2][0]

’c’

>>> T[2][1][1]

’g’

However, this becomes very hard to handle if we we simply add a couple
more branches. The only good way to work with trees is representing them
as a collection of nodes. Let us start with a simple example, where we define
a simple tree class with an attribute for value, another for a children (or
‘next’), and a method for printing the result:

[trees/trees/simple_tree/tree.py]

class SimpleTree(object):

def __init__(self, value=None, children=None):

self.children = children or []

self.value = value

def __repr__(self, level=0):

ret = "\t"*level+repr(self.value)+"\n"

192 CHAPTER 12. INTRODUCTION TO GRAPHS

for child in self.children:

ret += child.__repr__(level+1)

return ret

def main():

"""

’a’

’b’

’d’

’e’

’c’

’h’

’g’

"""

st = SimpleTree(’a’, [SimpleTree(’b’, [SimpleTree(’d’),

SimpleTree(’e’)]), SimpleTree(’c’, [SimpleTree(’h’),

SimpleTree(’g’)])])

print(st)

if __name__ == ’__main__’:

main()

In the next chapter we will learn how to improve this class, including
many features and methods that a tree can hold. For now, it is useful to
keep in mind that when we are prototyping data structures such as trees, we
should always be able to come up with a flexible class to specify arbitrary
attributes in the constructor. The following program implements what is
referred to as a bunch class;, a generic tool that is a specialization of the
Python’s dict class and that let you create and set arbitrary attributes on
the fly:

[trees/simple_trees/bunchclass.py]

class BunchClass(dict):

def __init__(self, *args, **kwds):

super(BunchClass, self).__init__(*args, **kwds)

self.__dict__ = self

def main():

12.3. INTRODUCTION TO TREES 193

’’’ {’right’: {’right’: ’Xander’, ’left’: ’Willow’}, ’left’:

{’right’: ’Angel’, ’left’: ’Buffy’}}’’’

bc = BunchClass # notice the absence of ()

tree = bc(left = bc(left="Buffy", right="Angel"), right =

bc(left="Willow", right="Xander"))

print(tree)

if __name__ == ’__main__’:

main()

In the example above, the function’s arguments *args and **kwds can
hold an arbitrary number of arguments and an arbitrary number of keywords
arguments, respectively.

194 CHAPTER 12. INTRODUCTION TO GRAPHS

Chapter 13

Binary Trees

13.1 Basic Concepts

Binary trees are tree data structures where each node has at most two child
nodes: the left and the right. Child nodes may contain references to their
parents. The root of a tree (the ancestor of all nodes) can exist either inside
or outside the tree.

Binary trees can be seen as a way of passing an initial number n of tokens
down, meaning that at any point in the tree the sum of all the horizontal
nodes will be n. The degree of every node is maximum two. Supposing that
an arbitrary rooted tree has m internal nodes and each internal node has
exactly two children, if the tree has n leaves, the degree of the tree is n− 1:

2m = n + m− 1→ m = n− 1,

i.e a tree with n nodes has exactly n− 1 branches or degree.

13.2 Representing Binary Trees

The simplest (and silliest) way to represent a binary tree is using Python’s
lists. The following module constructs a list with a root and two empty
sublists for the children. To add a left subtree to the root of a tree, we insert
a new list into the second position of the root list. Note that this algorithm is
not very efficient due to the restrictions that Python’s lists have on inserting
and popping in the middle::

195

196 CHAPTER 13. BINARY TREES

Figure 13.1: The height (h) and width (number of leaves) of a (perfectly
balanced) binary tree.

[trees/binary_trees/BT_lists.py]

def BinaryTreeList(r):

return [r, [], []]

def insertLeft(root, newBranch):

t = root.pop(1)

if len(t) > 1:

root.insert(1,[newBranch,t,[]])

else:

root.insert(1,[newBranch, [], []])

return root

def insertRight(root, newBranch):

t = root.pop(2)

if len(t) > 1:

root.insert(2,[newBranch,[],t])

else:

root.insert(2,[newBranch,[],[]])

return root

def getRootVal(root):

13.2. REPRESENTING BINARY TREES 197

return root[0]

def setRootVal(root, newVal):

root[0] = newVal

def getLeftChild(root):

return root[1]

def getRightChild(root):

return root[2]

def main():

’’’

3

[5, [4, [], []], []]

[7, [], [6, [], []]]

’’’

r = BinaryTreeList(3)

insertLeft(r,4)

insertLeft(r,5)

insertRight(r,6)

insertRight(r,7)

print(getRootVal(r))

print(getLeftChild(r))

print(getRightChild(r))

if __name__ == ’__main__’:

main()

However this method is not very practical when we have many branches
(or at least it needs many improvements, for example, how it manages the
creation of new lists and how it displays or searches for new elements).

A more natural way to handle binary trees is (again) by representing it as
a collection of nodes. A simple node in a binary tree should carry attributes
for value and for left and right children, and it can have a method to identify
leaves:

[trees/binary_trees/BT.py]

198 CHAPTER 13. BINARY TREES

class BT(object):

def __init__(self, value):

self.value = value

self.left = None

self.right = None

def is_leaf(self):

return self.left is None and self.right is None

def insert_left(self, new_node):

if not self.left:

self.left = BT(new_node)

else:

t = BT(self.left)

t.left = new_node

self.left = t

def insert_right(self, new_node):

if not self.right:

self.right = BT(new_node)

else:

t = BT(self.right)

t.right = new_node

self.right = t

def __repr__(self):

return ’{}’.format(self.value)

def tests_BT():

"""

1

2 3

4 5 6 7

"""

tree = BT(1)

tree.insert_left(2)

tree.insert_right(3)

tree.left().insert_left(4)

tree.left().insert_right(5)

tree.right().insert_left(6)

13.3. BINARY SEARCH TREES 199

tree.right().insert_right(7)

print(tree.right().right())

tree.right().right().value(8)

print(tree.right().right())

assert(tree.right().is_leaf() == False)

assert(tree.right().right().is_leaf() == True)

print("Tests Passed!")

if __name__ == ’__main__’:

tests_BT()

13.3 Binary Search Trees

A binary search tree (BST) is a node-based binary tree data structure which
has the following properties:

1. The left subtree of a node contains only nodes with keys less than the
node’s key.

2. The right subtree of a node contains only nodes with keys greater than
the node’s key.

3. Both the left and right subtrees must also be a binary search tree.

4. There must be no duplicate nodes.

If the binary search tree is balanced, the following operations are O(lnn):
(i) finding a node with a given value (lookup), (ii) finding a node with max-
imum or minimum value, and (iii) insertion or deletion of a node.

Representing Binary Search Trees

The following code implements a class for a binary search tree using our
previous binary tree class as a superclass. The main difference now is that
we can only insert a new node under the binary search tree conditions, which
naturally gives us a method for finding an element in the tree. To be able
to achieve this, we use polymorphism on the superclass’s insert right and
insert left methods, and we unify them to the proper insert method:

200 CHAPTER 13. BINARY TREES

[trees/binary_trees/BST.py]

from BT import BT

class BST(BT):

def __init__(self, value=None):

self.value = value

self.left = None

self.right = None

def insert_left(self, new_node):

self.insert(value)

def insert_right(self, new_node):

self.insert(value)

def insert(self, value):

if self.value == None:

self.value = value

else:

if value > self.value:

self.right = self.right and self.right.insert(value)

or BST(value)

else:

self.left = self.left and self.left.insert(value) or

BST(value)

return self

def find(self, value):

if value == self.value:

return self

elif value > self.value and self.right:

return self.right.find(value)

elif self.left:

return self.left.find(value)

return None

13.3. BINARY SEARCH TREES 201

def main():

"""

4

2 6

1 3 5 7

"""

tree = BST()

tree.insert(4)

tree.insert(2)

tree.insert(6)

tree.insert(1)

tree.insert(3)

tree.insert(7)

tree.insert(5)

print(tree.get_right())

print(tree.get_right().get_left())

print(tree.get_right().get_right())

print(tree.get_left())

print(tree.get_left().get_left())

print(tree.get_left().get_right())

assert(tree.find(30) == None)

if __name__ == ’__main__’:

main()

There are many other ways that a tree can be created. We could, for
instance, think of two classes, one simply for nodes, and a second one that
controls these nodes. This is not much different from the previous example
(and in the end of this chapter we will see a third hybrid example of these
two):

[trees/binary_trees/BST_with_Nodes.py]

class Node(object):

def __init__(self, value):

self.value = value

self.left = None

self.right = None

202 CHAPTER 13. BINARY TREES

def __repr__(self):

return ’{}’.format(self.value)

class BSTwithNodes(object):

def __init__(self):

self.root = None

def insert(self, value):

if not self.root:

self.root = Node(value)

else:

current = self.root

while True:

if value < current.value:

if current.left:

current = current.left

else:

current.left = Node(value)

break;

elif value > current.value:

if current.right:

current = current.right

else:

current.right = Node(value)

break;

else:

break

def main():

"""

BST

4

2 6

1 3 5 7

"""

tree = BSTwithNodes()

l1 = [4, 2, 6, 1, 3, 7, 5]

for i in l1: tree.insert(i)

print(tree.root)

13.4. SELF-BALANCING BST 203

print(tree.root.right)

print(tree.root.right.left)

print(tree.root.right.right)

print(tree.root.left)

print(tree.root.left.left)

print(tree.root.left.right)

if __name__ == ’__main__’:

main()

13.4 Self-Balancing BST

A balanced tree is a tree where the differences of the height of every subtree
is at most equal to 1. A self-balancing binary search tree is any node-based
binary search tree that automatically keeps itself balanced. By applying a
balance condition we ensure that the worst case runtime of common tree
operations will be at most O(lnn).

Balancing Factor of a Tree

A balancing factor can be attributed to each internal node in a tree, being the
difference between the heights of the left and right subtrees. There are many
balancing methods for trees, but they are usually based on two operations:

? Node splitting (and merging): nodes are not allowed to have more than
two children, so when a node become overfull it splits into two subnodes.

? Node rotations: process of switching edges. If x is the parent of y, we
make y the parent of x and x must take over one of the children of y.

AVL Trees

An AVL tree is a binary search tree with a self-balancing condition where the
difference between the height of the left and right subtrees cannot be more
than one.

To implement an AVL tree, we can start by adding a self-balancing
method to our BST classes, called every time we add a new node to the

204 CHAPTER 13. BINARY TREES

tree. The method works by continuously checking the height of the tree,
which is added as a new attribute:

def height(node):

if node is None:

return -1

else:

return node.height

def update_height(node):

node.height = max(height(node.left), height(node.right)) + 1

Now we can go ahead and implement the rebalancing method for our
tree. The method will check whether the difference between the new heights
of the right and left subtrees are up to 1. If this is not true, the method will
perform the rotations:

def rebalance(self, node):

while node is not None:

update_height(node)

if height(node.left) >= 2 + height(node.right):

if height(node.left.left) >= height(node.left.right):

self.right_rotate(node)

else:

self.left_rotate(node.left)

self.right_rotate(node)

elif height(node.right) >= 2 + height(node.left):

if height(node.right.right) >=

height(node.right.left):

self.left_rotate(node)

else:

self.right_rotate(node.right)

self.left_rotate(node)

node = node.value

The rotation methods are straightforward: it takes a node and swaps it
to the right or to the left children node:

13.4. SELF-BALANCING BST 205

def left_rotate(self, x):

y = x.right

y.value = x.value

if y.value is None:

self.root = y

else:

if y.value.left is x:

y.value.left = y

elif y.value.right is x:

y.value.right = y

x.right = y.left

if x.right is not None:

x.right.value = x

y.left = x

x.value = y

def right_rotate(self, x):

y = x.left

y.value = x.value

if y.value is None:

self.root = y

else:

if y.value.left is x:

y.value.left = y

elif y.value.right is x:

y.value.right = y

x.left = y.right

if x.left is not None:

x.left.value = x

y.right = x

x.value = y

We are now ready to write the entire AVL tree class! In the following code
we have used our old BST class as a superclass, together with the methods
we have described above. In addition, two methods for traversals were used,
and we will explain them better in the next chapter. For now, it is good
to keep the example in mind and that this AVL tree indeed supports insert,
find, and delete-min operations at O(lnn) time:

206 CHAPTER 13. BINARY TREES

[trees/binary_trees/avl.py]

from BST_with_Nodes import BSTwithNodes, Node

class AVL(BSTwithNodes):

def __init__(self):

self.root = None

def left_rotate(self, x):

y = x.right

y.value = x.value

if y.value is None:

self.root = y

else:

if y.value.left is x:

y.value.left = y

elif y.value.right is x:

y.value.right = y

x.right = y.left

if x.right is not None:

x.right.value = x

y.left = x

x.value = y

update_height(x)

update_height(y)

def right_rotate(self, x):

y = x.left

y.value = x.value

if y.value is None:

self.root = y

else:

if y.value.left is x:

y.value.left = y

elif y.value.right is x:

y.value.right = y

x.left = y.right

if x.left is not None:

x.left.value = x

y.right = x

13.4. SELF-BALANCING BST 207

x.value = y

update_height(x)

update_height(y)

def insert_item(self, value):

if self.root == None:

self.root = Node(value)

else:

current = self.root

while True:

if value < current.value:

if current.left:

current = current.left

else:

current.left = Node(value)

break;

elif value > current.value:

if current.right:

current = current.right

else:

current.right = Node(value)

break;

else:

break

def insert(self, value):

node = self.insert_item(value)

self.rebalance(node)

def rebalance(self, node):

while node is not None:

update_height(node)

if height(node.left) >= 2 + height(node.right):

if height(node.left.left) >= height(node.left.right):

self.right_rotate(node)

else:

self.left_rotate(node.left)

self.right_rotate(node)

208 CHAPTER 13. BINARY TREES

elif height(node.right) >= 2 + height(node.left):

if height(node.right.right) >=

height(node.right.left):

self.left_rotate(node)

else:

self.right_rotate(node.right)

self.left_rotate(node)

node = node.value

def inorder(self, node):

if node is not None:

self.inorder(node.left)

print(node.value)

self.inorder(node.right)

def preorder(self, node):

if node is not None:

print(node.value)

self.preorder(node.left)

self.preorder(node.right)

def postorder(self, node):

if node is not None:

self.postorder(node.left)

self.postorder(node.right)

print(node.value)

def height(node):

if node is None: return -1

else: return node.height

def update_height(node):

node.height = max(height(node.left), height(node.right)) + 1

def main():

tree = AVL()

tree.insert(4)

tree.insert(2)

tree.insert(6)

tree.insert(1)

13.4. SELF-BALANCING BST 209

tree.insert(3)

tree.insert(7)

tree.insert(5)

print(’Inorder Traversal:’)

tree.inorder(tree.root)

if __name__ == ’__main__’:

main()

Red-black Trees

Red-black trees are an evolution of a binary search trees that aim to keep the
tree balanced without affecting the complexity of the primitive operations.
This is done by coloring each node in the tree with either red or black and
preserving a set of properties that guarantees that the deepest path in the
tree is not longer than twice the shortest one.

Red-black trees have the following properties:

? Every node is colored with either red or black.

? All leaf (nil) nodes are colored with black; if a node’s child is missing
then we will assume that it has a nil child in that place and this nil
child is always colored black.

? Both children of a red node must be black nodes.

? Every path from a node n to a descendent leaf has the same number
of black nodes (not counting node n). We call this number the black
height of n.

Binary Heaps

Binary heaps are complete balanced binary trees. The heap property makes
it easier to maintain the structure, i.e., the balance of the tree. There is
no need to modify a structure of the tree by splitting or rotating nodes in a
heap: the only operation will be swapping parent and child nodes.

210 CHAPTER 13. BINARY TREES

In a binary heap, the root (the smallest or largest element) is always
found in h[0]. Considering a node at index i:

? the parent index is i−1
2

,

? the left child index is 2i + 1,

? the right child index is 2i + 2.

13.5. ADDITIONAL EXERCISES 211

13.5 Additional Exercises

Another (Complete Example) of a Binary Tree

[trees/binary_trees/binary_tree.py]

’’’ Implementation of a binary tree and its properties. For

example, the following bt:

1 ---> level 0

2 3 ---> level 1

4 5 ---> level 2

6 7 ---> level 3

8 9 ---> level 4

has the following properties:

- SIZE OR NUMBER OF NODES: n = 9

- NUMBER OF BRANCHES OR INTERNAL NODES: b = n-1 = 8

- VALUE OF ROOT = 1

- MAX_DEPTH OR HEIGHT: h = 4

- IS BALANCED? NO

- IS BST? NO

- INORDER DFT: 8, 6, 9, 4, 7, 2, 5, 1, 3

- POSTORDER DFT: 8, 9, 6, 7, 4, 5, 2, 3, 1

- PREORDER DFT: 1, 2, 4, 6, 8, 9, 7, 5, 3

- BFT: 1, 2, 3, 4, 5, 6, 7, 8, 9

’’’

from collections import deque

class NodeBT(object):

def __init__(self, item=None, level=0):

’’’ Construtor for a Node in the Tree ’’’

self.item = item

self.level = level

self.left = None

self.right = None

self.traversal = []

212 CHAPTER 13. BINARY TREES

’’’

METHODS TO MODIFY NODES

’’’

def _addNextNode(self, value, level_here=1):

’’’ Aux for self.addNode(value)’’’

self.traversal = []

new_node = NodeBT(value, level_here)

if not self.item:

self.item = new_node

elif not self.left:

self.left = new_node

elif not self.right:

self.right = new_node

else:

self.left = self.left._addNextNode(value, level_here+1)

return self

’’’

METHODS TO PRINT/SHOW NODES ATTRIBUTES

’’’

def __repr__(self):

’’’ Private method for this class string representation’’’

return ’{}’.format(self.item)

def _getDFTpreOrder(self, node):

’’’ Traversal Pre-Order, O(n)’’’

if node:

if node.item: self.traversal.append(node.item)

self._getDFTpreOrder(node.left)

self._getDFTpreOrder(node.right)

return self

def _printDFTpreOrder(self, noderoot):

’’’ Fill the pre-order traversal array ’’’

self.traversal = []

13.5. ADDITIONAL EXERCISES 213

self._getDFTpreOrder(noderoot)

return self.traversal

def _getDFTinOrder(self, node):

’’’ Traversal in-Order, O(n)’’’

if node:

self._getDFTinOrder(node.left)

if node.item: self.traversal.append(node.item)

self._getDFTinOrder(node.right)

return self

def _printDFTinOrder(self, noderoot):

’’’ Fill the in-order traversal array ’’’

self.traversal = []

self._getDFTinOrder(noderoot)

return self.traversal

def _getDFTpostOrder(self, node):

’’’ Traversal post-Order, O(n)’’’

if node:

self._getDFTpostOrder(node.left)

self._getDFTpostOrder(node.right)

if node.item: self.traversal.append(node.item)

return self

def _getBFT(self, node):

’’’ Traversal bft, O(n)’’’

if node:

queue = deque()

queue.append(node)

while len(queue) > 0:

current = queue.popleft()

if current.item: self.traversal.append(current)

if current.left: queue.append(current.left)

if current.right: queue.append(current.right)

return self

def _printBFT(self, noderoot):

’’’ Fill the in-order traversal array ’’’

self.traversal = []

214 CHAPTER 13. BINARY TREES

self._getBFT(noderoot)

return self.traversal

def _printDFTpostOrder(self, noderoot):

’’’ Fill the post-order traversal array ’’’

self.traversal = []

self._getDFTpostOrder(noderoot)

return self.traversal

def _searchForNode(self, value):

’’’ Traverse the tree looking for the node’’’

if self.item == value: return self

else:

found = None

if self.left: found = self.left._searchForNode(value)

if self.right: found = found or

self.right._searchForNode(value)

return found

def _findNode(self, value):

’’’ Find whether a node is in the tree.

if the traversal was calculated, it is just a membership

checking, which is O(1), otherwise it is necessary to

traverse

the binary tree, so best case is O(1) and worst is O(n).

’’’

if self.traversal: return value in self.traversal

else: return self._searchForNode(value)

def _isLeaf(self):

’’’ Return True if the node is a leaf ’’’

return not self.right and not self.left

def _getMaxHeight(self, level=0):

’’’ Get the max height at the node, O(n)’’’

levelr, levell = -1, -1

if self.right:

levelr = self.right._getMaxHeight(level +1)

if self.left:

13.5. ADDITIONAL EXERCISES 215

levell = self.left._getMaxHeight(level +1)

return max(levelr, levell) + 1

def _getMinHeight(self, level=0):

’’’ Get the min height at the node, O(n)’’’

levelr, levell = -1, -1

if self.right:

levelr = self.right._getMinHeight(level +1)

if self.left:

levell = self.left._getMinHeight(level +1)

return min(levelr, levell) + 1

def _isBalanced(self):

’’’ Find whether the tree is balanced, by calculating

heights first, O(n2) ’’’

if self._getMaxHeight() - self._getMinHeight() < 2:

return False

else:

if self._isLeaf():

return True

elif self.left and self.right:

return self.left._isBalanced() and

self.right._isBalanced()

elif not self.left and self.right:

return self.right._isBalanced()

elif not self.right and self.left:

return self.right._isBalanced()

def _isBST(self):

’’’ Find whether the tree is a BST, inorder ’’’

if self.item:

if self._isLeaf(): return True

elif self.left:

if self.left.item < self.item: return

self.left._isBST()

else: return False

elif self.right:

if self.right.item > self.item: return

self.right._isBST()

else: return False

216 CHAPTER 13. BINARY TREES

else:

raise Exception(’Tree is empty’)

class BinaryTree(object):

’’’

>>> bt = BinaryTree()

>>> for i in range(1, 10): bt.addNode(i)

>>> bt.hasNode(7)

True

>>> bt.hasNode(12)

False

>>> bt.printTree()

[1, 2, 4, 6, 8, 9, 7, 5, 3]

>>> bt.printTree(’pre’)

[1, 2, 4, 6, 8, 9, 7, 5, 3]

>>> bt.printTree(’bft’)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> bt.printTree(’post’)

[8, 9, 6, 7, 4, 5, 2, 3, 1]

>>> bt.printTree(’in’)

[8, 6, 9, 4, 7, 2, 5, 1, 3]

>>> bt.hasNode(9)

True

>>> bt.hasNode(11)

False

>>> bt.isLeaf(8)

True

>>> bt.getNodeLevel(1)

0

>>> bt.getNodeLevel(8)

4

>>> bt.getSizeTree()

9

>>> bt.isRoot(10)

False

>>> bt.isRoot(1)

True

13.5. ADDITIONAL EXERCISES 217

>>> bt.getHeight()

4

>>> bt.isBST()

False

>>> bt.isBalanced()

False

>>> bt.isBalanced(2)

False

>>> bt.getAncestor(8, 5)

2

>>> bt.getAncestor(8, 5, ’pre-post’)

2

>>> bt.getAncestor(8, 5, ’post-in’)

2

’’’

def __init__(self):

’’’ Construtor for the Binary Tree, which is a container of

Nodes’’’

self.root = None

’’’

METHODS TO MODIFY THE TREE

’’’

def addNode(self, value):

’’’ Add new node to the tree, by the left first, O(n) ’’’

if not self.root: self.root = NodeBT(value)

else: self.root._addNextNode(value)

’’’

METHODS TO PRINT/SHOW TREES ATTRIBUTES

’’’

def __repr__(self):

’’’ Private method for this class string representation’’’

return ’{}’.format(self.item)

218 CHAPTER 13. BINARY TREES

def printTree(self, order = ’pre’):

’’’ Print Tree in the chosen order ’’’

if self.root:

if order == ’pre’: return

self.root._printDFTpreOrder(self.root)

elif order == ’in’: return

self.root._printDFTinOrder(self.root)

elif order == ’post’: return

self.root._printDFTpostOrder(self.root)

elif order == ’bft’: return

self.root._printBFT(self.root)

else: raise Exception(’Tree is empty’)

def hasNode(self, value):

’’’ Verify whether the node is in the Tree ’’’

return bool(self.root._findNode(value))

def isLeaf(self, value):

’’’ Return True if the node is a Leaf ’’’

node = self.root._searchForNode(value)

return node._isLeaf()

def getNodeLevel(self, item):

’’’ Return the level of the node, best O(1), worst O(n) ’’’

node = self.root._searchForNode(item)

if node: return node.level

else: raise Exception(’Node not found’)

def getSizeTree(self):

’’’ Return how many nodes in the tree, O(n) ’’’

return len(self.root._printDFTpreOrder(self.root))

def isRoot(self, value):

’’’Return the root of the tree ’’’

return self.root.item == value

def getHeight(self):

’’’ Returns the height/depth of the tree, best/worst O(n)

’’’

13.5. ADDITIONAL EXERCISES 219

return self.root._getMaxHeight()

def isBalanced(self, method=1):

’’’ Return True if the tree is balanced’’’

if method == 1:

’’’ O(n2)’’’

return self.root._isBalanced()

else:

’’’ O(n)’’’

return self.root._isBalancedImproved()

def isBST(self, method=1):

’’’ Return True if the tree is BST’’’

return self.root._isBST()

def _getAncestorPreIn(self, preorder, inorder, value1, value2):

’’’ Return the ancestor of two nodes with pre and in’’’

root = preorder[0]

preorder = preorder[1:]

i = 0

item = inorder[0]

value1left, value2left = False, False

while item != root and i < len(inorder):

if item == value1: value1left = True

elif item == value2: value2left = True

i += 1

item = inorder[i]

if (value1left and not value2left) or (value2left and not

value1left):

return root

else:

return self._getAncestorPreIn(preorder, inorder[:i] +

inorder[i+1:], value1, value2)

def _getAncestorPrePost(self, preorder, postorder, value1,

value2):

’’’ Return the ancestor of two nodes with pre and post’’’

root = preorder[0]

preorder = preorder[1:]

postorder = postorder[:-1]

220 CHAPTER 13. BINARY TREES

value1right, value2right = False, False

i = len(postorder)-1

itempre = preorder[0]

itempos = postorder[i]

while itempre != itempos and i > 0:

if itempos == value1: value1right = True

elif itempos == value2: value2right = True

i -= 1

itempos = postorder[i]

if (value1right and not value2right) or (value2right and

not value1right):

return root

else:

return self._getAncestorPrePost(preorder, postorder[:i]

+ postorder[i+1:], value1, value2)

def _getAncestorInPost(self, inorder, postorder, value1,

value2):

’’’ Return the ancestor of two nodes with in and post’’’

root = postorder[-1]

postorder = postorder[:-1]

value1left, value2left = False, False

i = 0

item = inorder[i]

while item != root and i < len(inorder):

if item == value1: value1left = True

elif item == value2: value2left = True

i += 1

item = inorder[i]

if (value1left and not value2left) or (value2left and not

value1left):

return root

else:

return self._getAncestorInPost(postorder, inorder[:i] +

inorder[i+1:], value1, value2)

def _getAncestorBST(self, preorder, value1, value2):

’’’ Return the ancestor of two nodes if it is a bst’’’

13.5. ADDITIONAL EXERCISES 221

while preorder:

current = preorder[0]

if current < value1:

try: preorder = preorder[2:]

except: return current

elif current > value2:

try: preorder = preorder[1:]

except: return current

elif value1 <= current <= value2:

return current

return None

def getAncestor(self, value1, value2, method=’pre-in’):

’’’ Return the commom ancestor for two nodes’’’

if method == ’pre-in’:

’’’ Using pre and inorder, best/worst O(n)’’’

preorder = self.root._printDFTpreOrder(self.root)

inorder = self.root._printDFTinOrder(self.root)

return self._getAncestorPreIn(preorder, inorder, value1,

value2)

if method == ’pre-post’:

’’’ Using pre and postorder, best/worst O(n)’’’

preorder = self.root._printDFTpreOrder(self.root)

postorder = self.root._printDFTpostOrder(self.root)

return self._getAncestorPrePost(preorder, postorder,

value1, value2)

if method == ’post-in’:

’’’ Using in and postorder, best/worst O(n)’’’

inorder = self.root._printDFTinOrder(self.root)

postorder = self.root._printDFTpostOrder(self.root)

return self._getAncestorInPost(inorder, postorder,

value1, value2)

if method == ’bst’:

if self.isBST():

preorder = self.root._printDFTpreOrder(self.root)

return self._getAncestorBST(preorder, value1, value2)

else:

return Exception(’The tree is not a BST’)

222 CHAPTER 13. BINARY TREES

if __name__ == ’__main__’:

import doctest

doctest.testmod()

Another (Complete Example) of a Binary Search Tree

[trees/binary_trees/binary_search_tree.py]

from binary_tree import BinaryTree, NodeBT

’’’ Implementation of a binary search tree and its properties.

We use the Binary Tree class and its Node class as

superclasses, and we modify the methods

that are needeed to create a BST (polymorphism). For example,

the following bst:

7 ---> level 0

4 9 ---> level 1

2 5 8 10 ---> level 2

1 6 ---> level 3

has the following properties:

- SIZE OR NUMBER OF NODES: n = 10

- NUMBER OF BRANCHES OR INTERNAL NODES: b = n-1 = 9

- VALUE OF ROOT = 7

- MAX_DEPTH OR HEIGHT: h = 3

- IS BALANCED? YES

- IS BST? YES

- INORDER DFT: 1, 2, 4, 5, 6, 7, 8, 9, 10

- POSTORDER DFT: 1, 2, 6, 5, 4, 8, 10, 9, 7

- PREORDER DFT: 7, 4, 2, 1, 5, 6, 9, 8, 10

- BFT: 7, 4, 9, 2, 5, 8, 10, 1, 6

’’’

class NodeBST(NodeBT):

13.5. ADDITIONAL EXERCISES 223

def _addNextNode(self, value, level_here=1):

’’’ Aux for self.addNode(value): for BST, best O(1), worst

O(log n) ’’’

self.traversal = []

new_node = NodeBST(value, level_here)

if not self.item:

self.item = new_node

elif value < self.item:

self.left = self.left and self.left._addNextNode(value,

level_here+1) or new_node

else:

self.right = self.right and

self.right._addNextNode(value, level_here+1) or

new_node

return self

def _searchForNode(self, value):

’’’ Traverse the tree looking for the node. For BST it is

O(logn) ’’’

if self.item == value: return self

elif value > self.item and self.right: return

self.right._findNode(value)

elif value < self.item and self.left: return

self.left._findNode(value)

return None

class BinarySearchTree(BinaryTree):

’’’

>>> bst = BinarySearchTree()

>>> l1 = [7, 4, 5, 9, 2, 8, 1, 6, 10]

>>> for i in l1: bst.addNode(i)

>>> bst.hasNode(3)

False

>>> bst.hasNode(10)

True

>>> bst.printTree(’pre’)

[7, 4, 2, 1, 5, 6, 9, 8, 10]

>>> bst.printTree(’post’)

224 CHAPTER 13. BINARY TREES

[1, 2, 6, 5, 4, 8, 10, 9, 7]

>>> bst.printTree(’in’)

[1, 2, 4, 5, 6, 7, 8, 9, 10]

>>> bst.printTree(’bft’)

[7, 4, 9, 2, 5, 8, 10, 1, 6]

>>> bst.getHeight()

3

>>> bst.isBST()

True

>>> bst.isBalanced()

False

>>> bst.isBalanced(2)

False

>>> bst.getAncestor(2, 9)

7

>>> bst.getAncestor(2, 9, ’bst’)

7

>>> bst.getAncestor(2, 9, ’pre-post’)

7

>>> bst.getAncestor(2, 9, ’post-in’)

7

’’’

def addNode(self, value):

’’’ Add new node to the tree, by the left first, O(n).

The only difference from the Binary Tree class is the

node class is

NodeBST and not NodeBT ’’’

if not self.root: self.root = NodeBST(value)

else: self.root._addNextNode(value)

if __name__ == ’__main__’:

import doctest

doctest.testmod()

Chapter 14

Traversals and Problems on
Graphs and Trees

Traversals are algorithms used to visit the objects (nodes) in some connected
structure, such as a tree or a graph. Traversal problems can be either visiting
every node or visiting only some specific nodes.

14.1 Depth-First Search

Depth-first traversal, or depth-first search (DFS), are algorithms that searches
deeper first in a graph or a tree. Their difference when in graphs or trees is
that in case of graphs, it is necessary to mark nodes as visited (otherwise we
might be stuck in a loop).

Figure 14.1: Binary tree traversals: preorder, inorder, postorder, and breath-
first search.

225

226CHAPTER 14. TRAVERSALS AND PROBLEMS ONGRAPHS AND TREES

DFS algorithms are called once for every node that is reachable from the
start node, looking at its successors. The runtime is O(number of reachable
nodes + total number of outgoing edges from these nodes) = O(V + E).
DFSs are usually implemented using LIFO structure such as stacks to keep
track of the discovered nodes, and they can be divided in three different
strategies:

Preorder: Visit a node before traversing subtrees (root → left → right):

def preorder(root):

if root != 0:

yield root.value

preorder(root.left)

preorder(root.right)

Postorder: Visit a node after traversing all subtrees (left → right → root):

def postorder(root):

if root != 0:

postorder(root.left)

postorder(root.right)

yield root.value

Inorder: Visit a node after traversing its left subtree but before the right
subtree (left → root → right):

def inorder(root):

if root != 0:

inorder(root.left)

yield root.value

inorder(root.right)

14.2. BREADTH-FIRST SEARCH 227

14.2 Breadth-First Search

Breadth-first traversal, or breath-first search (BFS), are algorithms that yields
the values of all nodes of a particular depth before going to any deeper node.

Problems that use BFS usually ask to find the fewest number of steps
(or the shortest path) needed to reach a certain end point from the starting
point. Traditionally, BFSs are implemented using a list to store the values
of the visited nodes and then a FIFO queue to store those nodes that have
yet to be visited. The total runtime is also O(V + E).

14.3 Representing Tree Traversals

There are many ways we could write traversals. In the following code we
use the “BST with nodes” class, defined in the last chapter, to implement
each of the traversal algorithms. For the DFS cases, we have also tested two
different methods:

[trees/traversals/BST_with_Nodes_traversal.py]

from BST_with_Nodes import BSTwithNodes, Node

class BSTTraversal(BSTwithNodes):

def __init__(self):

self.root = None

self.nodes_BFS = []

self.nodes_DFS_pre = []

self.nodes_DFS_post = []

self.nodes_DFS_in = []

def BFS(self):

self.root.level = 0

queue = [self.root]

current_level = self.root.level

while len(queue) > 0:

current_node = queue.pop(0)

if current_node.level > current_level:

current_level += 1

228CHAPTER 14. TRAVERSALS AND PROBLEMS ONGRAPHS AND TREES

self.nodes_BFS.append(current_node.value)

if current_node.left:

current_node.left.level = current_level + 1

queue.append(current_node.left)

if current_node.right:

current_node.right.level = current_level + 1

queue.append(current_node.right)

return self.nodes_BFS

def DFS_inorder(self, node):

if node is not None:

self.DFS_inorder(node.left)

self.nodes_DFS_in.append(node.value)

self.DFS_inorder(node.right)

return self.nodes_DFS_in

def DFS_preorder(self, node):

if node is not None:

self.nodes_DFS_pre.append(node.value)

self.DFS_preorder(node.left)

self.DFS_preorder(node.right)

return self.nodes_DFS_pre

def DFS_postorder(self, node):

if node is not None:

self.DFS_postorder(node.left)

self.DFS_postorder(node.right)

self.nodes_DFS_post.append(node.value)

return self.nodes_DFS_post

def main():

tree = BSTTraversal()

l1 = [10, 5, 15, 1, 6, 11, 50]

for i in l1: tree.insert(i)

print(’Breadth-First Traversal: ’, tree.BFS())

print(’Inorder Traversal: ’, tree.DFS_inorder(tree.root))

14.3. REPRESENTING TREE TRAVERSALS 229

print(’Preorder Traversal: ’, tree.DFS_preorder(tree.root))

print(’Postorder Traversal: ’, tree.DFS_postorder(tree.root))

if __name__ == ’__main__’:

main()

230CHAPTER 14. TRAVERSALS AND PROBLEMS ONGRAPHS AND TREES

14.4 Additional Exercises

More Traversals in a BST

As an alternative to the example shown in this chapter, in the following
program we implement traversals for our old BST class (without nodes):

[traversals/BST_traversal.py]

from BST import BST

class TranversalBST(object):

def __init__(self):

self.bst = BST(None)

self.nodes = []

def insert(self, value):

if not self.bst.value:

self.bst.value = value

else:

self.bst.insert(value)

def contains(self, value):

return bool(self.bst.find(value))

def get(self, index):

for i, value in enumerate(self.inorder()):

if i == index:

return value

def inorder(self):

current = self.bst

self.nodes = []

stack = []

while len(stack) > 0 or current is not None:

if current is not None:

stack.append(current)

current = current.left

else:

current = stack.pop()

self.nodes.append(current.value)

14.4. ADDITIONAL EXERCISES 231

current = current.right

return self.nodes

def preorder(self):

self.nodes = []

stack = [self.bst]

while len(stack) > 0:

curr = stack.pop()

if curr is not None:

self.nodes.append(curr.value)

stack.append(curr.right)

stack.append(curr.left)

return self.nodes

def preorder2(self):

self.nodes = []

current = self.bst

stack = []

while len(stack) > 0 or current is not None:

if current is not None:

self.nodes.append(current.value)

stack.append(current)

current = current.left

else:

current = stack.pop()

current = current.right

return self.nodes

def main():

"""

10

5 15

1 6 11 50

"""

t = TranversalBST()

t.insert(10)

t.insert(5)

t.insert(15)

232CHAPTER 14. TRAVERSALS AND PROBLEMS ONGRAPHS AND TREES

t.insert(1)

t.insert(6)

t.insert(11)

t.insert(50)

print(t.preorder())

print(t.preorder2())

print(t.inorder())

if __name__ == ’__main__’:

main()

Balance and Depth in a BST

In the following example we use the class in the previous example with some
methods to find the (maximum and minimum) depths, to check whether the
tree is balanced and to find a key in preorder and inorder traversals:

[trees/traversals/BST_extra_methods.py]

from BST_traversal import TranversalBST

from BST import BST

class BSTwithExtra(TranversalBST):

def __init__(self):

self.bst = BST(None)

self.nodes = []

def get_inorder(self, k):

for i, value in enumerate(self.inorder()):

if value == k:

return i

def get_preorder(self, k):

for i, value in enumerate(self.preorder()):

if value == k:

return i

def is_balanced(self, threshold=1):

14.4. ADDITIONAL EXERCISES 233

maxd = self.get_max_depth()

mind = self.get_min_depth()

print(’Max depth: ’ + str(maxd))

print(’Min depth: ’ + str(mind))

return maxd -mind

def get_min_depth(self, node=None, initial=1):

if node is None and initial == 1:

node = self.bst

if node.left and node.right:

return 1 + min(self.get_min_depth(node.left, 0),

self.get_min_depth(node.right, 0))

else:

if node.left:

return 1 + self.get_max_depth(node.left, 0)

elif node.right:

return 1 + self.get_max_depth(node.right, 0)

else:

return 0

def get_max_depth(self, node=None, initial=1):

if node is None and initial == 1:

node = self.bst

if node.left and node.right:

return 1 + max(self.get_max_depth(node.left, 0),

self.get_max_depth(node.right, 0))

else:

if node.left:

return 1 + self.get_max_depth(node.left, 0)

elif node.right:

return 1 + self.get_max_depth(node.right, 0)

else:

return 0

def main():

"""

10

5 15

1 6 11 50

60

234CHAPTER 14. TRAVERSALS AND PROBLEMS ONGRAPHS AND TREES

70

80

"""

t = BSTwithExtra()

l1 = [10, 5, 15, 1, 6, 11, 50, 60, 70, 80]

for i in l1: t.insert(i)

print(t.inorder())

print(t.preorder())

assert(t.get_max_depth() == 5)

assert(t.get_min_depth() == 2)

assert(t.is_balanced() == 3)

assert(t.get_inorder(10) == 3)

assert(t.get_preorder(10) == 0)

"""

1

2 3

4 5 6 7

"""

t2 = BSTwithExtra()

l2 = [1, 2, 3, 4, 5, 6, 7, 8]

for i in l2: t2.insert(i)

print(t2.inorder())

print(t2.preorder())

assert(t2.is_balanced() == 0)

print("Tests Passed!")

if __name__ == ’__main__’:

main()

Ancestor in a BST

The example bellow finds the lowest level common ancestor of two nodes in
a binary search tree:

[trees/traversals/BST_ancestor.py]

14.4. ADDITIONAL EXERCISES 235

from BST_traversal import TranversalBST

def find_ancestor(path, low_value, high_value):

’’’ find the lowest ancestor in a BST ’’’

while path:

current_value = path[0]

if current_value < low_value:

try:

path = path[2:]

except:

return current_value

elif current_value > high_value:

try:

path = path[1:]

except:

return current_value

elif low_value <= current_value <= high_value:

return current_value

return None

def test_find_ancestor():

"""

10

5 15

1 6 11 50

"""

t = TranversalBST()

l1 = [10, 5, 15, 1, 6, 11, 50]

for i in l1: t.insert(i)

path = t.preorder()

assert(find_ancestor(path, 1, 6) == 5)

assert(find_ancestor(path, 1, 11) == 10)

assert(find_ancestor(path, 11, 50) == 15)

assert(find_ancestor(path, 5, 15) == 10)

print("Tests passsed!")

if __name__ == ’__main__’:

test_find_ancestor()

236CHAPTER 14. TRAVERSALS AND PROBLEMS ONGRAPHS AND TREES

Bibliography

Websites:

[Interactive Python] http://interactivepython.org

[Google Style Guide] http://google-styleguide.code.com/svn/trunk/pyguide.html

[The git Repository for this book] https://github.com/mariwahl/Python-
and-Algorithms-and-Data-Structures

[Big-O Sheet] http://bigocheatsheet.com/

Books:

[A nice Book for Software Eng. Interviews] Cracking the Coding In-
terview, Gayle Laakmann McDowell, 2013

[A nice Python 3 Book] Programming in Python 3: A Complete Intro-
duction to the Python 3.1 Language, Mark Summerfield, 2011

237

http://interactivepython.org
http://google-styleguide.code.com/svn/trunk/pyguide.html
https://github.com/mariwahl/Python-and-Algorithms-and-Data-Structures
https://github.com/mariwahl/Python-and-Algorithms-and-Data-Structures
http://bigocheatsheet.com/

238 BIBLIOGRAPHY

[A nice Python Book] Learn Python The Hard Way, Zed A. Shaw, 2010

[A nice Algorithms Book] Mastering Basic Algorithms in the Python
Language, Magnus Lie Hetland, 2010

[Another nice Algorithms Book] The Algorithm Design Manual, S.S.
Skiena, 2008

[Another nice Python Book] Python 3 Object Oriented Programming,
Dusty Phillips, 2010

[Another nice guide for Software Eng. Interviews] Programming
Pearls, Jon Bentley, 1986

	I Get your wings! Python is a general-purpose, high-level programming language, which supports multiple programming paradigms, including object-oriented, imperative and functional programming or procedural styles. In the first part of this book, we will learn all these fancy words.
	Oh Hay, Numbers!
	Integers
	Floats
	Complex Numbers
	The fraction Module
	The decimal Module
	Other Representations
	Doing Some Math
	The NumPy Package

	Built-in Sequence Types
	Strings
	Tuples
	Lists
	Bytes and Byte Arrays

	Collection Data Structures
	Sets
	Dictionaries
	Python's collection Data Types
	Further Examples

	Python's Structure and Modules
	Modules in Python
	Control Flow
	File Handling
	Error Handling in Python

	Object-Oriented Design
	Classes and Objects
	Principles of OOP
	Python Design Patterns
	Additional Exercises

	Advanced Topics
	Multiprocessing and Threading
	Good Practices
	Unit Testing

	II Algorithms are Fun! It's time to add some sauce into our flight! In this second part we will learn how to make the computer become our awesome spaceship!
	Abstract Data Structures
	Stacks
	Queues
	Deques
	Priority Queues and Heaps
	Linked Lists
	Additional Exercises

	Asymptotic Analysis
	Complexity Classes
	Recursion
	Runtime in Functions

	Sorting
	Quadratic Sort
	Linear Sort
	Loglinear Sort
	Comparison Between Sorting Methods
	Additional Exercises

	Searching
	Sequential Search
	Binary Search
	Additional Exercises

	Dynamic Programming
	Memoization
	Additional Exercises

	III Climbing is so last week! I would rather fly, wouldn't you? Time to start our engines to reach the most fun objects in the algorithm world. Speed up to beautiful Graphs and Trees!
	Introduction to Graphs
	Basic Definitions
	The Neighborhood Function
	Introduction to Trees

	Binary Trees
	Basic Concepts
	Representing Binary Trees
	Binary Search Trees
	Self-Balancing BST
	Additional Exercises

	Traversals and Problems on Graphs and Trees
	Depth-First Search
	Breadth-First Search
	Representing Tree Traversals
	Additional Exercises

